992 resultados para wind forcing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hurricane Sandy was the largest storm on historical record in the Atlantic Ocean basin with extensive coastal damage caused by large waves and high storm surge. The primary objectives of this thesis are to compare and evaluate three different spatially-varying surface wind fields of Hurricane Sandy to investigate the impact of the differences between the complex wind fields on predictions of the sea surface evolution, and to evaluate the impact of the storm on the hydrodynamics in Great South Bay (GSB) and the discharge of ocean water into the back-barrier bay from overwash over Fire Island. Three different spatially-varying surface wind fields were evaluated and compared to wind observations, including the parametric Holland (1980) model (H80), the parametric Generalized Asymmetric Holland Model (GAHM), and results from the WeatherFlow Regional Atmospheric Modelling System (WRAMS). The winds were used to drive the coupled Delft3D-SWAN hydrodynamic and ocean wave models on a regional grid. The results indicate that the WRAMS wind field produces wave model predictions in the best agreement with significant wave height observations, followed by the GAHM and H80 wind fields and that a regional atmospheric wind model is best for hindcasting hurricane waves and water levels when detailed observations are available, while a parametric vortex model is best for forecasting hurricane sea surface conditions. Using a series of four connected Delft3D-SWAN grids to achieve finer resolution over Fire Island and GSB, a higher resolution WRAMS was used to predict waves and storm surge. The results indicate that strong local winds have the largest influence on water level fluctuations in GSB. Three numerical solutions were conducted with varying extents of barrier island overwash. The simulations allowing for minor and major overwash indicated good agreement with observations in the east end of GSB and suggest that island overwash provided a significant contribution of ocean water to GSB during the storm. Limiting the overwash in the numerical model directly impacts the total discharge into GSB from the ocean through existing inlets. The results of this study indicate that barrier island overwash had a significant impact on the water levels in eastern GSB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An energy analysis of the Fine Resolution Antarctic Model (FRAM) reveals the instability processes in the model. The main source of time-mean kinetic energy is the wind stress and the main sink is transfer to mean potential energy. The wind forcing thus helps maintain the density structure. Transient motions result from internal instabilities of the Bow rather than seasonal variations of the forcing. Baroclinic instability is found to be an important mechanism in FRAM. The highest values of available potential energy are found in the western boundary regions as well as in the Antarctic Circumpolar Current (ACC) region. All subregions with predominantly zonal flow are found to be baroclinically unstable. The observed deficit of eddy kinetic energy in FRAM occurs as a result of the high lateral friction, which decreases the growth rates of the most unstable waves. This high friction is required for the numerical stability of the model and can only be made smaller by using a finer horizontal resolution. A grid spacing of at least 10-15 km would be required to resolve the most unstable waves in the southern part of the domain. Barotropic instability is also found to be important for the total domain balance. The inverse transfer (that is, transfer from eddy to mean kinetic energy) does not occur anywhere, except in very localized tight jets in the ACC. The open boundary condition at the northern edge of the model domain does not represent a significant source or sink of eddy variability. However, a large exchange between internal and external mode energies is found to occur. It is still unclear how these boundary conditions affect the dynamics of adjacent regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With favored offshore and downstream advection, the question of which physical mechanism may promote onshore transport of larvae in upwelling systems is of central interest. We have conducted a semi-realistic high resolution (0.25 km) numerical study of Lagrangian transports across the inner-shelf under upwelling-favorable wind forcing conditions, focusing on the shelf area of the Southwestern Portuguese coast, in the lee of Cape Sines. We add our findings to several years of biological observations of C. montagui, a planktonic species with higher recruitment during the upwelling peak timely with the daylight flood. Simulations cover a fifteen days period during the summer of 2006. We focused on Spring and Neap tide periods and observed upfront differences between simulations and the in situ observa- tions. However, the model is capable of representing the main dynamics of the region, namely the re- petitive character of the inner-shelf currents. We find that the cross-shore flow varies significantly in the daily cycle, and locally within a scale of a few kilometers in association with local topography and the presence of the cape. We consider the region immediately in the lee of the cape to be an upwelling shadow where the larvae became retained, and found that tidally tied migration proves beneficial for successful recruitment during the spring tides period. Our work suggested that the wind is not the only mechanism responsible for the daily variability of the cross-shore exchange. However, its sharp reversal at midday is critical for the advection of larvae towards the coast.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.