793 resultados para whole body vibration
Resumo:
Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1–14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30–60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.
Resumo:
Delayed-onset muscle soreness, or ‘DOMS’, affects many people after exercise and can impair future performance. It usually peaks one to four days after exercise and several strategies are used to overcome it. The effectiveness and safety of many of these strategies applied and promoted is unknown.
Resumo:
Extreme vibration has been reported for small, high speed craft in the maritime sector, with performance and health threatening effects on boat operators and crew. Musculoskeletal injuries are an enduring problem for high speed craft passengers. Spinal or joint injuries and neurological disorders may occur from repetitive pounding over rough water, continued vibration and single impact events. The risk from whole body vibration (WBV) induced through the small vessels mainly depends on time spent on the craft, which can’t be changed in a military scenario; as well as the number of shocks and jolts, and their magnitude and frequency. In the European Union for example, physical agents directives require all employers to control exposure to a number of physical agents including noise and vibration. The EC Vibration Directive 2002/44/EC then sets out regulations for the control of health and safety risks from the exposure of workers to hand arm vibration (HAV) and WBV in the workplace. Australia has exposure standards relating to WBV, AS 2670.1-2001 – Evaluation of human exposure to whole body vibration. This standard is identical to the ISO 2631-1:1997, Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration. Currently, none of the jurisdictions in Australia have specific regulations for vibration exposures in workplaces. However vibration is mentioned to varying degrees in their general regulations, codes of practice and guidance material. WBV on high speed craft is normally caused by “continuous 'hammering' from short steep seas or wind against tide conditions. Shock on High Speed Craft is usually caused by random impacts. Military organisations need the knowledge to make informed decisions regarding their marine operations, compliance with legislation and potentially harmful health effects, and develop and implement appropriate counter-measures. Marine case studies in the UK such as published MAIB (Marine Accident Investigation Branch) reports show injuries that have occurred in operation, and subsequent MCA (Maritime Coastguard Agency) guidance is provided (MGN 436 (M+F), WHOLE-BODY VIBRATION: Guidance on Mitigating Against the Effects of Shocks and Impacts on Small Vessels. MCA, 2011). This paper proposes a research framework to study the origin, impact and pathways for prevention of WBV in small, high speed craft in a maritime environment.
Resumo:
F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes an example of spontaneous transitions between qualitatively different coordination patterns during a cyclic lifting and lowering task. Eleven participants performed 12 trials of repetitive lifting and lowering in a ramp protocol in which the height of the lower shelf was raised or lowered I cm per cycle between 10 and 50 cm. Two distinct patterns of coordination were evident: a squat technique in which moderate range of hip, knee and ankle movement was utilised and ankle plantar-flexion occurred simultaneously with knee and hip extension; and a stoop technique in which the range of knee movement was reduced and knee and hip extension was accompanied by simultaneous ankle dorsi-flexion. Abrupt transitions from stoop to squat techniques were observed during descending trials, and from squat to stoop during ascending trials. Indications of hysteresis was observed in that transitions were more frequently observed during descending trials, and the average shelf height at the transition was 5 cm higher during ascending trials. The transitions may be a consequence of a trade-off between the biomechanical advantages of each technique and the influence of the lift height on this trade-off. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Previous studies have shown that following whole-body irradiation bone marrow (BM)-derived cells can migrate into the central nervous system, including the retina, to give rise to microglia-like cells. The detailed mechanism, however, remains elusive. We show in this study that a single-dose whole-body ?-ray irradiation (8 Gy) induced subclinical damage (i.e., DNA damage) in the neuronal retina, which is accompanied by a low-grade chronic inflammation, para-inflammation, characterized by upregulated expression of chemokines (CCL2, CXCL12, and CX3CL1) and complement components (C4 and CFH), and microglial activation. The upregulation of chemokines CCL2 and CXCL12 and complement C4 lasted for more than 160 days, whereas the expression of CX3CL1 and CFH was upregulated for 2 weeks. Both resident microglia and BM-derived phagocytes displayed mild activation in the neuronal retina following irradiation. When BM cells from CX3CR1gfp/+ mice or CX3CR1gfp/gfp mice were transplanted to wild-type C57BL/6 mice, more than 90% of resident CD11b+ cells were replaced by donor-derived GFP+ cells after 6 months. However, when transplanting CX3CR1gfp/+ BM cells into CCL2-deficient mice, only 20% of retinal CD11b+ cells were replaced by donor-derived cells at 6 month. Our results suggest that the neuronal retina suffers from a chronic stress following whole-body irradiation, and a para-inflammatory response is initiated, presumably to rectify the insults and maintain homeostasis. The recruitment of BM-derived myeloid cells is a part of the para-inflammatory response and is CCL2 but not CX3CL1 dependent. © 2012 Wiley Periodicals, Inc.
Resumo:
Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.
Resumo:
Despite its importance in social interactions, laughter remains little studied in affective computing. Intelligent virtual agents are often blind to users’ laughter and unable to produce convincing laughter themselves. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received less attention. The aim of this study is threefold. First, to probe human laughter perception by analyzing patterns of categorisations of natural laughter animated on a minimal avatar. Results reveal that a low dimensional space can describe perception of laughter “types”. Second, to investigate observers’ perception of laughter (hilarious, social, awkward, fake, and non-laughter) based on animated avatars generated from natural and acted motion-capture data. Significant differences in torso and limb movements are found between animations perceived as laughter and those perceived as non-laughter. Hilarious laughter also differs from social laughter. Different body movement features were indicative of laughter in sitting and standing avatar postures. Third, to investigate automatic recognition of laughter to the same level of certainty as observers’ perceptions. Results show recognition rates of the Random Forest model approach human rating levels. Classification comparisons and feature importance analyses indicate an improvement in recognition of social laughter when localized features and nonlinear models are used.
Resumo:
Laughter is a ubiquitous social signal in human interactions yet it remains understudied from a scientific point of view. The need to understand laughter and its role in human interactions has become more pressing as the ability to create conversational agents capable of interacting with humans has come closer to a reality. This paper reports on three aspects of the human perception of laughter when context has been removed and only the body information from the laughter episode remains. We report on ability to categorise the laugh type and the sex of the laugher; the relationship between personality factors with laughter categorisation and perception; and finally the importance of intensity in the perception and categorisation of laughter.
Resumo:
Letter to the Editor