797 resultados para whole body


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of our study was to compare the performance of low-dose linear slit digital radiography (DR) with computed radiography (CR) for the detection of trauma sequelae in the chest including rib fractures, pneumothorax, and lung contusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with GH deficiency (GHD) are insulin resistant with an increase in visceral fat mass (FM). Whether this holds true when sedentary control subjects (CS) are matched for waist has not been documented. GH replacement therapy (GHRT) results in a decrease in FM. Whether the decrease in FM is mainly related to a reduction in visceral FM remains to be proven. The aim was to separately assess visceral and subcutaneous FM in relation to insulin resistance (IR) in GHD patients before and after GHRT and in sedentary CS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-body computed tomography (WBCT) plays an important role in the management of severely injured patients. We evaluated the radiation exposure of WBCT scans using different positioning boards and arm positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the sensitivity and specificity of postmortem whole-body MRI for typical injuries resulting from traumatic causes of death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the optimal stochastic whole body vibration (SR-WBV) load modality regarding pelvic floor muscle (PFM) activity in order to complete the SR-WBV training methodology for future PFM training with SR-WBV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine sensitivity, specificity and inter-observer variability of different whole-body MRI (WB-MRI) sequences in patients with multiple myeloma (MM). METHODS AND MATERIALS: WB-MRI using a 1.5T MRI scanner was performed in 23 consecutive patients (13 males, 10 females; mean age 63+/-12 years) with histologically proven MM. All patients were clinically classified according to infiltration (low-grade, n=7; intermediate-grade, n=7; high-grade, n=9) and to the staging system of Durie and Salmon PLUS (stage I, n=12; stage II, n=4; stage III, n=7). The control group consisted of 36 individuals without malignancy (25 males, 11 females; mean age 57+/-13 years). Two observers independently evaluated the following WB-MRI sequences: T1w-TSE (T1), T2w-TIRM (T2), and the combination of both sequences, including a contrast-enhanced T1w-TSE with fat-saturation (T1+/-CE/T2). They had to determine growth patterns (focal and/or diffuse) and the MRI sequence that provided the highest confidence level in depicting the MM lesions. Results were calculated on a per-patient basis. RESULTS: Visual detection of MM was as follows: T1, 65% (sensitivity)/85% (specificity); T2, 76%/81%; T1+/-CE/T2, 67%/88%. Inter-observer variability was as follows: T1, 0.3; T2, 0.55; T1+/-CE/T2, 0.55. Sensitivity improved depending on infiltration grade (T1: 1=60%; 2=36%; 3=83%; T2: 1=70%; 2=71%; 3=89%; T1+/-CE/T2: 1=50%; 2=50%; 3=89%) and clinical stage (T1: 1=58%; 2=63%; 3=79%; T2: 1=58%; 2=88%; 3=100%; T1+/-CE/T2: 1=50%; 2=63%; 3=100%). T2w-TIRM sequences achieved the best reliability in depicting the MM lesions (65% in the mean of both readers). CONCLUSIONS: T2w-TIRM sequences achieved the highest level of sensitivity and best reliability, and thus might be valuable for initial assessment of MM. For an exact staging and grading the examination protocol should encompass unenhanced and enhanced T1w-MRI sequences, in addition to T2w-TIRM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate a triphasic injection protocol for whole-body multidetector computed tomography (MDCT) in patients with multiple trauma. Fifty consecutive patients (41 men) were examined. Contrast medium (300 mg/mL iodine) was injected starting with 70 mL at 3 mL/s, followed by 0.1 mL/s for 8 s, and by another bolus of 75 mL at 4 mL/s. CT data acquisition started 50 s after the beginning of the first injection. Two experienced, blinded readers independently measured the density in all major arteries, veins, and parenchymatous organs. Image quality was assessed using a five-point ordinal rating scale and compared to standard injection protocols [n = 25 each for late arterial chest, portovenous abdomen, and MDCT angiography (CTA)]. With the exception of the infrarenal inferior caval vein, all blood vessels were depicted with diagnostic image quality using the multiple-trauma protocol. Arterial luminal density was slightly but significantly smaller compared to CTA (P < 0.01). Veins and parenchymatous organs were opacified significantly better compared to all other protocols (P < 0.01). Arm artifacts reduced the density of spleen and liver parenchyma significantly (P < 0.01). Similarly high image quality is achieved for arteries using the multiple-trauma protocol compared to CTA, and parenchymatous organs are depicted with better image quality compared to specialized protocols. Arm artifacts should be avoided.