967 resultados para weed biological control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host-specificity test results Phycita sp. and highlight the contradictory results between the no-choice tests in India and Australia and the field host range in India. In no-choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non-target test plant species, respectively. Although Phycita sp. fed and completed development on two non-target test plant species (Vachellia planifrons and V. leucophloea) in no-choice tests in India, there was no evidence of the insect on the two non-target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open-field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prickly acacia (Vachellia nilotica subsp. indica), a native multipurpose tree in India, is a weed of National significance, and a target for biological control in Australia. Based on plant genetic and climatic similarities, native range surveys for identifying potential biological control agents for prickly acacia were conducted in India during 2008-2011. In the survey leaf-feeding geometrid, Isturgia disputaria Guenee (syn. Tephrina pulinda), widespread in Tamil Nadu and Karnataka States, was prioritized as a potential biological control agent based on field host range, damage potential and no choice test on non target plant species. Though the field host range study exhibited that V. nilotica ssp. indica and V. nilotica ssp. tomentosa were the primary hosts for successful development of the insect, I. disputaria, replicated no - choice larval feeding and development tests conducted on cut foliage and live plants of nine non-target acacia test plant species in India revealed the larval feeding and development on three of the nine non-target acacia species, V. tortilis, V. planiferons and V. leucophloea in addition to the V. nilotica ssp. indica and V. nilotica ssp. tomentosa. However, the proportion of larvae developing into adults was higher on V. nilotica subsp. indica and V. nilotica subsp. tomentosa, with 90% and 80% of the larvae completing development, respectively. In contrast, the larval mortality was higher on V. tortilis (70%), V. leucophloea (90%) and V. planiferons (70%). The no-choice test results support the earlier host specificity test results of I. disputaria from Pakistan, Kenya and under quarantine in Australia. Contrasting results between field host range and host use pattern under no-choice conditions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid proliferation and extensive spread of water hyacinth Eichhornia crassipes (Mart) Solms in the highland lakes of the Nile Basin within less than 15 years of introduction into the basin in the 1980s pauses potential environmental and social economic menace if the noxious weed is not controlled soon. The water weed has spread all round Lake Victoria and, in Uganda where infes tation is mos t severe, water hyacinth estimated at 1,330,000 ton smothers over 2,000 ha of the lakeshore (August,1994). Lake Kyoga which already constantly supplies River Nile with the weed is infested with over 570 ha, while over 80% of the river course in Uganda is fringed on either side with an average width of about 5m of water hyacinth. As the impact of infestation with water hyacinth on water quality and availability, transportation by water, fishing activities, fisheries ecology, hydro-power generation etc becomes clear in Uganda, serious discussion is under way on how to control and manage the noxious weed. This paper pauses some of the questions being asked regarding the possible application of mechanical and chemical means to control the water weed.Uganda has already initiated the use of biological control of water hyacinth on Lake Kyoga with a strategy to use two weevils namely Neochetinabruchi and Neochetina eichhorniae. The strategy to build capacity and infrastructure for mass multiplication and deployment of biological control of the weevils in the field developed in Uganda by the Fisheries Research Insti tu te (FIRI) and the Namulonge Agricultural and Animal production Research Insti tute (NAARI) is proposed in outline for evaluation. Plans to deploy this strategy on lake Kyoga are under way

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaf beetle Metriona elatior from Brazil-Argentina was screened in the Florida (USA) State quarantine facility as a potential biological control agent of tropical soda apple, Solanum viarum, a recently arrived weed species. Multiple-choice host-specificity tests were conducted in small cages (60 cm x 60 cm x 60 cm) using 95 plant species in 29 families. Adults fed heavily on the main target weed (S. viarum), and on turkeyberry, Solanum torvum (noxious weed of Asiatic origin); fed moderately on red soda apple, Solanum capsicoides (weed of South American origin), and eggplant, Solanum melongena (economic crop); and fed lightly on aquatic soda apple, Solanum tampicense (weed of Mexican-Caribbean-Central American origin), and on silverleaf nightshade, Solanum elaeagnifolium (native weed widely distributed). M. elatior adults laid 84 to 97% of their egg masses on S. viarum, and 3 to 16% on S. melongena. Non-choice host-specificity tests were also conducted in quarantine in which M. elatior adults and neonate larvae were exposed to 17 and 19 plant species, respectively. Tests with the neonates indicate that this insect was able to complete its development on S. viarum, S. torvum, S. melongena, and S. capsicoides. Although some adult feeding and oviposition occurred on S. melongena in quarantine on potted plants in small cages, no feeding or oviposition by M. elatior was observed in field experiments conducted in Brazil. Surveys in unsprayed S. melongena fields in Argentina and Brazil indicated that M. elatior is not a pest of S. melongena in South America. The evidence obtained from the South-American field surveys, Brazil open-field experiments, and Florida quarantine host specificity tests indicate that M. elatior causes significant feeding damage to S. viarum, and does not represent a threat to S. melongena crops in the USA. Therefore an application for permission to release M. elatior against S. viarum in the USA was submitted in October 1998.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of two fungal biocontrol agents, Alternaria cassiae and Pseudocercospora nigricans, and soybean planting density on sicklepod mortality and dry weight were studied in the field over 2 yr. The experimental field was divided into three equal areas: one without soybean and two where the soybean was sown in densities of 20 and 36 seeds per meter row with a 0.95-m row spacing. The fungi were sprayed alone or in a mixture at three growth stages of sicklepod plants grown at three levels of crop interference resulting from the three soybean planting densities. The fungal treatments were: an untreated control, A. cassiae (105 spores/m2), P. nigricans (3.3 g mycelium/m2), and the mixture of these two fungi. Sicklepod was at the cotyledonary leaf, two-leaf, and four-leaf stages when treated. Alternaria cassiae was most effective in reducing both sicklepod survival and dry weight. The mixture of P. nigricans and A. cassiae was generally comparable to but not better than A. cassiae alone in killing the weed (mortality) and reducing its growth (dry weight). Soybean density did not have significant effects on the mortality or the dry weight of sicklepod. Thus, there is no advantage to combining the highly effective biocontrol agent A. cassiae with the less effective P. nigricans or with soybean interference to control sicklepod. However, the results validate the efficacy of A. cassiae by itself as a bioherbicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports of hydrilla (Hydrilla verticilata) infestation lakes Bisina and Opeta were verbally communicated by some members of FIRRI who undertook surveys during the LVEMP 1 phase (1997 to 2004) to assess the diversity and stocks of fishes in the Kyoga basin satellite lakes. This issue was taken up by FIRRI and NAARI staff who work on aquatic weeds management to ascertain and quantify the presence of H. verticilata and other aquatic weeds, with the sole aim of finding ways and means of controlling one of the world's worst aquatic weeds, H. verticilata.The survey on Lake Opeta indicated that this weed was rare since only a few small broken pieces were sited at the lake's outflow through an extensive wetland to Lake Bisina. It was therefore concluded that it was not economically viable to allocate resources for further survey of H. verticilata on Lake Opeta. This finding therefore discredited the previous (informal) reports that H. verticilata was well established on Lake Opeta. It should be noted that the reports came from scientists who were not well versed with systematics of aquatic plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.