988 resultados para wave equations
Resumo:
基于动量守恒和光参变过程中的三波耦合波方程, 和负单轴非线性光学晶体CsLiB6O10的色散方程, 研究了在光参变效应中超短激光脉冲由于群速度色散引起的展宽和形变。数值模拟显示, 在超短脉冲波形为双曲正割形和无啁啾调制时, 高阶群速度色散引起的超短脉冲为50 fs时, 晶体长度为10 mm, 紫外光213 nm作为基波入射时的脉冲展宽是波长为532 nm绿光在同等条件下的1.6倍。脉冲展宽程度与入射波长和晶体长度有关, 波长越短和晶体长度越长则脉冲展宽和波形变化越严重,高阶色散引起的超短高斯脉冲展宽, 将
Resumo:
We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented. (C) 1998 Optical Society of America.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
A nonvolatile recording scheme is proposed using LiNbO3:Ce:Cu crystals and modulated UV light to record gratings simultaneously in two centres and using red light to bleach the grating in the shallow centre to realize persistent photorefractive holographic storage. Compared with the normal UV-sensitized nonvolatile holographic system, the amplitude of refractive-index changes is greatly increased and the recording sensitivity is significantly enhanced by recording with UV light in the LiNbO3:Ce:Cu crystals. Based on jointly solving the two-centre material equations and the coupled-wave equations, temporal evolutions of the photorefractive grating and the diffraction effciency are effectively described and numerically analysed. Roles of doping levels and recording-beam intensity are discussed in detail. Theoretical results confirm and predict experimental results.
Resumo:
We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge-Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
Resumo:
提出了一种在双掺杂铌酸锂晶体中用调制的双紫外光进行非挥发全息记录的方法。与通常的用紫外光敏化的非挥发全息记录相比,这种方法可以大幅度地提高光栅强度和记录灵敏度。联立双中心物质方程和双光束耦合波方程,数值分析了光栅强度和衍射效率随时间的变化并讨论了掺杂浓度和记录光强对紫外光非挥发全息记录机制下光折变效应的影响。研究发现,紫外光记录得到的深浅中心的光栅具有相同的相位,总的光栅(深浅中心光栅的叠加)强度为两光栅强度之和,固定过程中深中心的光栅得到增强;增大深浅中心掺杂的浓度可以提高光栅强度,增大记录紫外光的光强
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We obtain analytical solutions of the coupled wave equations that describe the Bragg diffraction of ultrashort pulsed finite beams by a thick planar grating, using two-dimensional coupled wave theory. The diffraction properties for the case of an ultrashort pulsed finite beam with Gaussian profiles in both the time and spatial domains are investigated. The spectral bandwidth of the diffracted beam, the Bragg selectivity bandwidth and the diffraction efficiency of the volume grating are influenced by the geometry parameter and the input bandwidth. Therefore extra attention should be paid to designing optical elements based on volume gratings for use with ultrashort pulsed waves in applications of pulse shaping and processing.
Resumo:
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Along with the widespread and in-depth applications in petroleum prospecting and development, the seismic modeling and migration technologies are proposed with a higher requirement by oil industrial, and the related practical demand is getting more and more urgent. Based on theories of modeling and migration methods for wave equation, both related with velocity model, I thoroughly research and develop some methods for the goal of highly effective and practical in this dissertation. In the first part, this dissertation probes into the layout designing by wave equations modeling, focusing on the target-oriented layout designing method guided by wave equation modeling in complicated structure areas. It is implemented by using the fourth order staggered grid finite difference (FD) method in velocity-stress 2D acoustic wave equations plus perfectly matched layer (PML) absorbing boundary condition. To design target-oriented layout: (a) match the synthetic record on the surface with events of subsurface structures by analyzing the snapshots of theoretical model; (b) determine the shot-gather distance by tracking the events of target areas and measuring the receiving range when it reaches the surface; (c) restrict the range of valid shot-gather distance by drawing seismic windows in single shot records; (d) choose the best trace distance by comparing the resolution of prospecting targets from the simulated records with different trace distance. Eventually, we obtained the observation system parameters, which achieve the design requirements. In the second part, this dissertation presents the practical method to improve the 3D Fourier Finite Difference (FFD) migration, and carefully analyzes all the factors which influence 3D FFD migration’s efficiency. In which, one of the most important parameters of migration is the extrapolating step. This dissertation presents an efficient 3D FFD migration algorithm, which use FFD propagator to extrapolate wavefields over big layers, and use Born-Kirchhoff interpolator to image wavefields over small layers between the big ones. Finally, I show the effectiveness of this hybrid migration method by comparing migration results from 3D SEG/EAGE model with different methods.