980 resultados para water isotopes
Resumo:
The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.
Resumo:
We explored the extent to which δ13C and δD values of freshwater bryozoan statoblasts can provide information about the isotopic composition of zooids, bryozoan food and surrounding water. Bryozoan samples were collected from 23 sites and encompassed ranges of nearly 30‰ for δ13C and 100‰ for δD values. δ13C offsets between zooids and statoblasts generally ranged from −3 to +4.5‰, with larger offsets observed in four samples. However, a laboratory study with Plumatella emarginata and Lophopus crystallinus demonstrated that, in controlled settings, zooids had only 0–1.2‰ higher δ13C values than statoblasts, and 1.7‰ higher values than their food. At our field sites, we observed a strong positive correlation between median δ13C values of zooids and median δ13C values of corresponding statoblasts. We also observed a positive correlation between median δD values of zooids and statoblasts for Plumatella, and a positive correlation between median δD values of statoblasts and δD values of lake water for Plumatella and when all bryozoan taxa were examined together. Our results suggest that isotope measurements on statoblasts collected from flotsam or sediment samples can provide information on the feeding ecology of bryozoans and the H isotopic composition of lake water.
Resumo:
The lipid and organic nitrogen isotopic (delta15N) compositions of two common deep-water corals (Lophelia pertusa and Madrepora oculata) collected from selected locations of the NE Atlantic are compared to the composition of suspended particulate organic matter, in order to determine their principle food source. Initial results suggest that they may feed primarily on zooplankton. This is based on the increased abundances of mono-unsaturated fatty acids and alcohols and the different ratios of the polyunsaturated fatty acids, 22:6/20:5 of the corals when compared to those of the suspended particulate organic matter. There is enrichment in L. pertusa of mono-unsaturated fatty acids and of delta15N relative to M. oculata. It is unclear whether this reflects different feeding strategies or assimilation/storage efficiencies of zooplankton tissue or different metabolism in the two coral species.
Oxygen and hydrogen isotopes measured on water bottle samples during EUROFLEETS cruise Iberia-Forams
Resumo:
Fifty-seven interstitial water samples from six sites (Ocean Drilling Program Sites 1225-1229 and 1231) in the eastern equatorial Pacific Ocean and the Peru margin were analyzed for the stable sulfur isotopic composition (34S/32S) of dissolved sulfate along with major and minor ions. With the exception of Site 1231, sulfate from the interstitial fluids (d34S values as much as 89 per mil vs. the SF6-based Vienna-Canyon Diablo troilite standard) is found at depth to be enriched in 34S with respect to modern seawater sulfate (d34S = ~21 per mil), indicating that microbial sulfate reduction (MSR) took place to different extents at all investigated sites. Deeper sediments at Sites 1228 and 1229 are additionally influenced by diffusion of a sulfate-rich brine that has already undergone sulfate reduction. The intensity of MSR depends on the availability of substrate (organic matter), sedimentation conditions, and the active bacterial community structure. Formation of isotopically heavy diagenetic barite at the sulfate-methane transition zone is expected at Sites 1227 (one front), 1229 (two fronts), and probably Site 1228. At Site 1231, the constant sulfur isotopic composition of sulfate and concentrations of minor pore water ions indicate that suboxic (essentially iron and manganese oxide based) diagenesis dominates and no net MSR occurs.
Resumo:
Two sites on the southern flank of the Costa Rica Rift were drilled on DSDP Legs 68 and 69, one on crust 3.9 m.y. old and the other on crust 5.9 m.y. old. The basement of the younger site is effectively cooled by the circulation of seawater. The basement of the older site has been sealed by sediment, and an interval in the uppermost 560 meters of basement recently reheated to temperatures of 60 to 120°C. Although the thickness of the sediments at the two sites is similar (150-240 m versus 270 m), the much rougher basement topography at the younger Site 505 produces occasional basement outcrops, through which 80 to 90% of the total heat loss apparently occurs by advection of warm seawater. This seawater has been heated only slightly, however; the temperature at the base of the sediments is only 9°C. Changes in its composition due to reaction with the basement basalts are negligible, as indicated by profiles of sediment pore water chemistry. Bacterial sulfate reduction in the sediments produces a decrease in SO4 (and Ca) and an increase in alkalinity (and Sr and NH3) as depth increases to an intermediate level, but at deeper levels these trends reverse, and all of these species plus Mg, K, Na, and chlorinity approach seawater values near basement. Si, however, is higher, and Li may be lower. At the older site, Site 501/504, where heat loss is entirely by conduction, the temperature at the sediment/basement contact is 59°C. Sediment pore water chemistry is heavily affected by reaction with the basaltic basement, as indicated by large decreases in d18O, Mg, alkalinity, Na, and K and an increase in Ca with increasing depth. The size of the changes in d18O, Mg, alkalinity, Ca, Sr, and SO4 varies laterally over 500 meters, indicating lateral gradients in pore water chemistry that are nearly as large as the vertical gradients. The lateral gradients are believed to result from similar lateral gradients in the composition of the basement formation water, which propagate upward through the sediments by diffusion. A model of the d18O profile suggests that the basement at Site 501/504 was sealed off from advection about 1 m.y. ago, so that reaction rates began to dominate the basement pore water chemistry. A limestone-chert diagenetic front began to move upward through the lower sediments less than 200,000 yr. ago.
Resumo:
This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.
Resumo:
We propose that the observed short-term stable isotope fluctuations reflect changes in high- and low-latitude intermediate to deep water sources, based on a high-resolution stable isotope record of planktic and benthic foraminifera from the Early Maastrichtian (~71.3 to ~ 69.6 Ma) of Blake Nose (DSDP Site 390A, North Atlantic). Sources of these waters may have been the low-latitude eastern Tethys and high-latitude North Atlantic. Changes in intermediate to deep water sources were probably steered by eccentricity-controlled insolation fluctuations. Lower insolation favored the formation of high-latitude deep waters due to positive feedback mechanisms resulting in high-latitude cooling. This led to a displacement of low-latitude deep waters at Blake Nose. Higher insolation reduced intermediate to deep-water formation in high latitudes, yielding a more northern flow of low-latitude deep waters.