960 resultados para voice activity detection


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection was used to explore the kinetics ofthe enzymatic reaction. The different effects ofreaction conditions including the concentration of Mn2l, incubation temperature and pH on PFOlidase (PLD, EC 3.4.13.9) activity in erythrocyte lysates against three different substrates, Gly-Pro, Val-Pro and Leu-Pro were investigated. Also, the effects of colchicine which can prevent or delay cancer ofliver on the PLD activity were studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explored the CE with Ru(bpy)(3)(2+) electrochemiluminescence detection for the kinetic study of drug-enzyme interaction. Effects of four nonsteroidal anti - inflammatory drugs including aspirin, paracetamol, sodium salicylate and phenacetin on prolidase (PLD) activity in erythrocytes were investigated. Aspirin enhanced PLD activity whereas the other three had inhibiting effects. This may reveal their different effects on the collagen biosynthesis and catabolism that influence tumor invasiveness. Kinetic study of paracetamol on PLD showed that the value of Michaelis constant Km for PLD was 1.23 mM. The mechanism of PLD inhibition by paracetamol is noncompetitive inhibition, and the inhibitor constant K-i value obtained in our research was 9.73 x 10(3) mu g/L.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel phosphonoacetaldehyde-oxidizing activity was detected in cell-extracts of the marine bacterium Roseovarius nubinhibens ISM grown on 2-aminoethylphosphonic acid (2-AEP; ciliatine). Extracts also contained 2-AEP transaminase and phosphonoacetate hydrolase activities. These findings indicate the existence of a biological route from 2-AEP via phosphonoacetaldehyde for the production of phosphonoacetate, which has not previously been shown to be a natural product. The three enzymes appear to constitute a previously-unreported pathway for the mineralization of 2-AEP which is a potentially important source of phosphorus in the nutrient-stressed marine environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A replica plate screening technique, based on the acid molybdate assay for detection of phosphate has been developed to permit the detection of microorganisms capable of mineralizing organophosphonates. The method was further adapted as the basis of an activity stain for the detection of the carbon - phosphorus bond cleavage enzyme phosphonoacetate hydrolase in PAGE gels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present an Orientation Free Adaptive Step Detection (OFASD) algorithm for deployment in a smart phone for the purposes of physical activity monitoring. The OFASD algorithm detects individual steps and measures a user’s step counts using the smart phone’s in-built accelerometer. The algorithm considers both the variance of an individual’s walking pattern and the orientation of the smart phone. Experimental validation of the algorithm involved the collection of data from 10 participants using five phones (worn at five different body positions) whilst walking on a treadmill at a controlled speed for periods of 5 min. Results indicated that, for steps detected by the OFASD algorithm, there were no significant differences between where the phones were placed on the body (p > 0.05). The mean step detection accuracies ranged from 93.4 % to 96.4 %. Compared to measurements acquired using existing dedicated commercial devices, the results demonstrated that using a smart phone for monitoring physical activity is promising, as it adds value to an accepted everyday accessory, whilst imposing minimum interaction from the user. The algorithm can be used as the underlying component within an application deployed within a smart phone designed to promote self-management of chronic disease where activity measurement is a significant factor, as it provides a practical solution, with minimal requirements for user intervention and less constraints than current solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The joint fluids of 37 patients with rheumatoid arthritis, eight patients with traumatic injuries to their joints, two patients with Reiter's syndrome and three patients with psoriatic arthritis were tested for the presence of B cell colony stimulating activity (B cell CSA). B cell CSA was found in all of the joint fluids from the patients with rheumatoid arthritis but in none of the joint fluids from patients with traumatic injuries to their joints or in the joint fluids from the patients with Reiter's syndrome. A trace of B cell CSA was found in the joint fluid of one of the three patients with psoriatic arthritis. There was a positive correlation (r = 0.796) between the amount of rheumatoid factor present in the joint fluids and the titre of B cell CSA. This correlation was highly significant (P less than 0.001). The B cell CSA was localized to component(s) with molecular weight ranges 115-129 kD and 64-72 kD and an isoelectric point of 6.8. Its activity was sensitive to reduction with 2-mercaptoethanol and to the oxidising action of potassium periodate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).

Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.

Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.

Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular logic-based computation continues to throw up new applications in sensing and switching, the newest of which is the edge detection of objects. The scope of this phenomenon is mapped out by the use of structure-activity relationships, where several structures of the molecules and of the objects are examined. The different angles and curvatures of the objects are followed with good-fidelity in the visualized edges, even when the objects are in reverse video.