948 resultados para visuomotoric, visual feedback, intermanual transfer
Resumo:
The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.
Resumo:
This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.
Resumo:
An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.
Resumo:
Stand-alone virtual environments (VEs) using haptic devices have proved useful for assembly/disassembly simulation of mechanical components. Nowadays, collaborative haptic virtual environments (CHVEs) are also emerging. A new peer-to-peer collaborative haptic assembly simulator (CHAS) has been developed whereby two users can simultaneously carry out assembly tasks using haptic devices. Two major challenges have been addressed: virtual scene synchronization (consistency) and the provision of a reliable and effective haptic feedback. A consistency-maintenance scheme has been designed to solve the challenge of achieving consistency. Results show that consistency is guaranteed. Furthermore, a force-smoothing algorithm has been developed which is shown to improve the quality of force feedback under adverse network conditions. A range of laboratory experiments and several real trials between Labein (Spain) and Queen’s University Belfast (Northern Ireland) have verified that CHAS can provide an adequate haptic interaction when both users perform remote assemblies (assembly of one user’s object with an object grasped by the other user). Moreover, when collisions between grasped objects occur (dependent collisions), the haptic feedback usually provides satisfactory haptic perception. Based on a qualitative study, it is shown that the haptic feedback obtained during remote assemblies with dependent collisions can continue to improve the sense of co-presence between users with regard to only visual feedback.
Resumo:
We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion-extension, forearm pronation-supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60A degrees visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.
Resumo:
Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling.
Resumo:
Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.
Resumo:
Mechanisms for visuospatial cognition are often inferred directly from errors in behavioral reports of remembered target direction. For example, gaze-centered target representations for reach were first inferred from reach overshoots of target location relative to gaze. Here, we report evidence for the hypothesis that these gaze-dependent reach errors stem predominantly from misestimates of hand rather than target position, as was assumed in all previous studies. Subjects showed typical gaze-dependent overshoots in complete darkness, but these errors were entirely suppressed by continuous visual feedback of the finger. This manipulation could not affect target representations, so the suppressed gaze-dependent errors must have come from misestimates of hand position, likely arising in a gaze-dependent transformation of hand position signals into visual coordinates. This finding has broad implications for any task involving localization of visual targets relative to unseen limbs, in both healthy individuals and patient populations, and shows that response-related transformations cannot be ignored when deducing the sources of gaze-related errors.
Resumo:
OBJECTIVE: To evaluate the effect of altering a single component of a rehabilitation programme (e.g. adding bilateral practice alone) on functional recovery after stroke, defined using a measure of activity.
DATA SOURCES: A search was conducted of Medline/Pubmed, CINAHL and Web of Science.
REVIEW METHODS: Two reviewers independently assessed eligibility. Randomized controlled trials were included if all participants received the same base intervention, and the experimental group experienced alteration of a single component of the training programme. This could be manipulation of an intrinsic component of training (e.g. intensity) or the addition of a discretionary component (e.g. augmented feedback). One reviewer extracted the data and another independently checked a subsample (20%). Quality was appraised according to the PEDro scale.
RESULTS: Thirty-six studies (n = 1724 participants) were included. These evaluated nine training components: mechanical degrees of freedom, intensity of practice, load, practice schedule, augmented feedback, bilateral movements, constraint of the unimpaired limb, mental practice and mirrored-visual feedback. Manipulation of the mechanical degrees of freedom of the trunk during reaching and the addition of mental practice during upper limb training were the only single components found to independently enhance recovery of function after stroke.
CONCLUSION: This review provides limited evidence to support the supposition that altering a single component of a rehabilitation programme realises greater functional recovery for stroke survivors. Further investigations are required to determine the most effective single components of rehabilitation programmes, and the combinations that may enhance functional recovery.
Resumo:
Hintergrund und Fragestellung: Die korrekte intraoperative Positionierung und Einstellung eines mobilen Bildverstärkers (auch C-Bogen) kann zurzeit theoretisch mit Hilfe von Lehrbüchern erlernt, am Gerät selbst aber nur ohne visuelle Rückmeldung, d.h. ohne ein zur Ausrichtung korrespondierendes Röntgenbild, trainiert werden. Hieraus ergibt sich die Fragestellung, inwiefern das Training der Handhabung und richtigen Einstellung des C-Bogens in verschiedenen Operationsszenarien durch ein C-Bogen Simulationssystem als Teil eines CBT-Systems (Computer Based Training) unterstützt werden kann. Methoden: In Kooperation mit Ärzten aus Unfallchirurgie und Radiologie wurde das computer-basierte Trainingssystem virtX entwickelt. virtX kann dem Nutzer verschiedene Aufgaben zur Einstellung eines C-Bogens stellen und die Ausführung und das Ergebnis bewerten. Die Aufgaben können mit Hilfe eines Autorensystems erstellt und vom Trainierenden in verschiedenen Modi erfüllt werden: im rein virtuellen Modus oder im kombinierten virtuell-realen Modus. Im rein virtuellen Modus steuert der Nutzer den virtuellen C-Bogen in einem virtuellen OP-Saal mittels einer grafisch-interaktiven Benutzungsoberfläche. Im virtuell-realen Modus hingegen wird die Ausrichtung eines realen C-Bogens erfasst und auf den virtuellen C-Bogen übertragen. Während der Aufgabenerfüllung kann der Benutzer zu jeder Zeit ein realitätsnahes, virtuelles Röntgenbild erzeugen und dabei alle Parameter wie Blendenstellung, Röntgenintensität, etc. wie bei einem realen C-Bogen steuern. virtX wurde auf einem dreitägigen Kurs für OP-Personal mit 120 Teilnehmern eingesetzt und auf der Basis von Fragebögen evaluiert. Ergebnisse: Von den Teilnehmern gaben 79 einen ausgefüllten Evaluations-Fragebogen ab. Das Durchschnittsalter der 62 weiblichen und 15 männlichen Teilnehmer (zwei o.A.) lag bei 34 ± 9 Jahren, die Berufserfahrung bei 8,3 ± 7,6 Jahren. 18 Personen (23%) gaben an, gelegentlich mit einem C-Bogen zu arbeiten, 61 (77%) arbeiteten regelmäßig damit. Über 83% der befragten Teilnehmer empfanden virtX als eine sinnvolle Ergänzung zur herkömmlichen Ausbildung am C-Bogen. Das virtuelle Röntgen wurde mit einer Zustimmung von 91% der befragten Teilnehmer als besonders wichtig für das Verständnis der Arbeitsweise eines C-Bogens beurteilt. Ebenso erhielt der kombinierte virtuell-reale Modus mit 84% Zustimmung einen vergleichsweise hohen Stellenwert. Schlussfolgerung: Die Befragung zeichnet ein positives Bild der Akzeptanz des virtX-System als substanzielle Ergänzung zur herkömmlichen Ausbildung am C-Bogen.
Resumo:
Lors d’une tâche de pointage manuel, la présence de corrections rapides, adaptées, automatiques et même réflexes (Franklin et Wolpert, 2008) suite à une perturbation par saut de curseur a pu être observée dans de nombreuses études. Ici, nous avons souhaité déterminer si ces corrections étaient purement réflexes où si elles étaient amorcées seulement lorsque la perturbation mettait en péril l’atteinte de la cible ; ces corrections ont-elles aussi un aspect fonctionnel ? Dans une première expérience nous avons fait varier la taille des cibles (5 ou 30 mm de diamètre) et des sauts du curseur (5, 15 ou 25 mm) de manière à obtenir certaines combinaisons où la cible pourrait être atteinte sans qu’aucune correction du mouvement pour contrecarrer l’effet du saut du curseur ne soit nécessaire. Des corrections réduisant l’erreur d’environ 65% ont été observées dans toutes les conditions. Dans une seconde expérience, les participants devaient atteindre une très grande cible (arc de 30°) et un saut de curseur de 15 mm était introduit pour certains essais peu de temps après l’amorce du mouvement. Les participants ont modifié leur mouvement dans le sens opposé à celui de la perturbation, et cela même s’ils n’avaient pas détecté consciemment le saut. Cependant, ces corrections étaient moins rapides et plus petites (42% de l’amplitude du saut de curseur) que celles observées lors de la première expérience. Nos résultats supportent le fait que l’amorce des corrections pour des erreurs de trajectoire induites expérimentalement soit de nature réflexe. Un deuxième processus serait alors responsable du déroulement de ces corrections ; ce deuxième processus est basé, entre autres, sur les caractéristiques de la cible.
Resumo:
L’objectif principal de la présente thèse était de déterminer les facteurs susceptibles d’influencer l’efficacité des processus de contrôle en ligne des mouvements d’atteinte manuelle. De nos jours, les mouvements d’atteinte manuelle réalisés dans un environnement virtuel (déplacer une souris d’ordinateur pour contrôler un curseur à l’écran, par exemple) sont devenus chose commune. Par comparaison aux mouvements réalisés en contexte naturel (appuyer sur le bouton de mise en marche de l’ordinateur), ceux réalisés en contexte virtuel imposent au système nerveux central des contraintes importantes parce que l’information visuelle et proprioceptive définissant la position de l’effecteur n’est pas parfaitement congruente. Par conséquent, la présente thèse s’articule autour des effets d’un contexte virtuel sur le contrôle des mouvements d’atteinte manuelle. Dans notre premier article, nous avons tenté de déterminer si des facteurs tels que (a) la quantité de pratique, (b) l’orientation du montage virtuel (aligné vs. non-aligné) ou encore (c) l’alternance d’un essai réalisé avec et sans la vision de l’effecteur pouvaient augmenter l’efficacité des processus de contrôle en ligne de mouvement réalisés en contexte virtuel. Ces facteurs n’ont pas influencé l’efficacité des processus de contrôle de mouvements réalisés en contexte virtuel, suggérant qu’il est difficile d’optimiser le contrôle des mouvements d’atteinte manuelle lorsque ceux-ci sont réalisés dans un contexte virtuel. L’un des résultats les plus surprenants de cette étude est que nous n’avons pas rapporté d’effet concernant l’orientation de l’écran sur la performance des participants, ce qui était en contradiction avec la littérature existante sur ce sujet. L’article 2 avait pour but de pousser plus en avant notre compréhension du contrôle du mouvement réalisé en contexte virtuel et naturel. Dans le deuxième article, nous avons mis en évidence les effets néfastes d’un contexte virtuel sur le contrôle en ligne des mouvements d’atteinte manuelle. Plus précisément, nous avons observé que l’utilisation d’un montage non-aligné (écran vertical/mouvement sur un plan horizontal) pour présenter l’information visuelle résultait en une importante diminution de la performance comparativement à un montage virtuel aligné et un montage naturel. Nous avons aussi observé une diminution de la performance lorsque les mouvements étaient réalisés dans un contexte virtuel aligné comparativement à un contexte naturel. La diminution de la performance notée dans les deux conditions virtuelles s’expliquait largement par une réduction de l’efficacité des processus de contrôle en ligne. Nous avons donc suggéré que l’utilisation d’une représentation virtuelle de la main introduisait de l’incertitude relative à sa position dans l’espace. Dans l’article 3, nous avons donc voulu déterminer l’origine de cette incertitude. Dans ce troisième article, deux hypothèses étaient à l’étude. La première suggérait que l’augmentation de l’incertitude rapportée dans le contexte virtuel de la précédente étude était due à une perte d’information visuelle relative à la configuration du bras. La seconde suggérait plutôt que l’incertitude provenait de l’information visuelle et proprioceptive qui n’est pas parfaitement congruente dans un contexte virtuel comparativement à un contexte naturel (le curseur n’est pas directement aligné avec le bout du doigt, par exemple). Les données n’ont pas supporté notre première hypothèse. Plutôt, il semble que l’incertitude soit causée par la dissociation de l’information visuelle et proprioceptive. Nous avons aussi démontré que l’information relative à la position de la main disponible sur la base de départ influence largement les processus de contrôle en ligne, même lorsque la vision de l’effecteur est disponible durant le mouvement. Ce résultat suggère que des boucles de feedback interne utilisent cette information afin de moduler le mouvement en cours d’exécution.
Resumo:
Les deux fonctions principales de la main sont la manipulation d’objet et l’exploration tactile. La détection du glissement, rapportée par les mécanorécepteurs de la peau glabre, est essentielle pour l’exécution de ces deux fonctions. Durant la manipulation d’objet, la détection rapide du micro-glissement (incipient slip) amène la main à augmenter la force de pince pour éviter que l’objet ne tombe. À l’opposé, le glissement est un aspect essentiel à l’exploration tactile puisqu’il favorise une plus grande acuité tactile. Pour ces deux actions, les forces normale et tangentielle exercées sur la peau permettent de décrire le glissement mais également ce qui arrive juste avant qu’il y ait glissement. Toutefois, on ignore comment ces forces contrôlées par le sujet pourraient être encodées au niveau cortical. C’est pourquoi nous avons enregistré l’activité unitaire des neurones du cortex somatosensoriel primaire (S1) durant l’exécution de deux tâches haptiques chez les primates. Dans la première tâche, deux singes devaient saisir une pastille de métal fixe et y exercer des forces de cisaillement sans glissement dans une de quatre directions orthogonales. Des 144 neurones enregistrés, 111 (77%) étaient modulés à la direction de la force de cisaillement. L’ensemble de ces vecteurs préférés s’étendait dans toutes les directions avec un arc variant de 50° à 170°. Plus de 21 de ces neurones (19%) étaient également modulés à l’intensité de la force de cisaillement. Bien que 66 neurones (59%) montraient clairement une réponse à adaptation lente et 45 autres (41%) une réponse à adaptation rapide, cette classification ne semblait pas expliquer la modulation à l’intensité et à la direction de la force de cisaillement. Ces résultats montrent que les neurones de S1 encodent simultanément la direction et l’intensité des forces même en l’absence de glissement. Dans la seconde tâche, deux singes ont parcouru différentes surfaces avec le bout des doigts à la recherche d’une cible tactile, sans feedback visuel. Durant l’exploration, les singes, comme les humains, contrôlaient les forces et la vitesse de leurs doigts dans une plage de valeurs réduite. Les surfaces à haut coefficient de friction offraient une plus grande résistance tangentielle à la peau et amenaient les singes à alléger la force de contact, normale à la peau. Par conséquent, la somme scalaire des composantes normale et tangentielle demeurait constante entre les surfaces. Ces observations démontrent que les singes contrôlent les forces normale et tangentielle qu’ils appliquent durant l’exploration tactile. Celles-ci sont également ajustées selon les propriétés de surfaces telles que la texture et la friction. Des 230 neurones enregistrés durant la tâche d’exploration tactile, 96 (42%) ont montré une fréquence de décharge instantanée reliée aux forces exercées par les doigts sur la surface. De ces neurones, 52 (54%) étaient modulés avec la force normale ou la force tangentielle bien que l’autre composante orthogonale avait peu ou pas d’influence sur la fréquence de décharge. Une autre sous-population de 44 (46%) neurones répondait au ratio entre la force normale et la force tangentielle indépendamment de l’intensité. Plus précisément, 29 (30%) neurones augmentaient et 15 (16%) autres diminuaient leur fréquence de décharge en relation avec ce ratio. Par ailleurs, environ la moitié de tous les neurones (112) étaient significativement modulés à la direction de la force tangentielle. De ces neurones, 59 (53%) répondaient à la fois à la direction et à l’intensité des forces. L’exploration de trois ou quatre différentes surfaces a permis d’évaluer l’impact du coefficient de friction sur la modulation de 102 neurones de S1. En fait, 17 (17%) neurones ont montré une augmentation de leur fréquence de décharge avec l’augmentation du coefficient de friction alors que 8 (8%) autres ont montré le comportement inverse. Par contre, 37 (36%) neurones présentaient une décharge maximale sur une surface en particulier, sans relation linéaire avec le coefficient de friction des surfaces. La classification d’adaptation rapide ou lente des neurones de S1 n’a pu être mise en relation avec la modulation aux forces et à la friction. Ces résultats montrent que la fréquence de décharge des neurones de S1 encode l’intensité des forces normale et tangentielle, le ratio entre les deux composantes et la direction du mouvement. Ces résultats montrent que le comportement d’une importante sous-population des neurones de S1 est déterminé par les forces normale et tangentielle sur la peau. La modulation aux forces présentée ici fait le pont entre les travaux évaluant les propriétés de surfaces telles que la rugosité et les études touchant à la manipulation d’objets. Ce système de référence s’applique en présence ou en absence de glissement entre la peau et la surface. Nos résultats quant à la modulation des neurones à adaptation rapide ou lente nous amènent à suggérer que cette classification découle de la manière que la peau est stimulée. Nous discuterons aussi de la possibilité que l’activité des neurones de S1 puisse inclure une composante motrice durant ces tâches sensorimotrices. Finalement, un nouveau cadre de référence tridimensionnel sera proposé pour décrire et rassembler, dans un même continuum, les différentes modulations aux forces normale et tangentielle observées dans S1 durant l’exploration tactile.
Resumo:
Visual information is vital for fast and accurate hand movements. It has been demonstrated that allowing free eye movements results in greater accuracy than when the eyes maintain centrally fixed. Three explanations as to why free gaze improves accuracy are: shifting gaze to a target allows visual feedback in guiding the hand to the target (feedback loop), shifting gaze generates ocular-proprioception which can be used to update a movement (feedback-feedforward), or efference copy could be used to direct hand movements (feedforward). In this experiment we used a double-step task and manipulated the utility of ocular-proprioceptive feedback from eye to head position by removing the second target during the saccade. We confirm the advantage of free gaze for sequential movements with a double-step pointing task and document eye-hand lead times of approximately 200 ms for both initial movements and secondary movements. The observation that participants move gaze well ahead of the current hand target dismisses foveal feedback as a major contribution. We argue for a feedforward model based on eye movement efference as the major factor in enabling accurate hand movements. The results with the double-step target task also suggest the need for some buffering of efference and ocular-proprioceptive signals to cope with the situation where the eye has moved to a location ahead of the current target for the hand movement. We estimate that this buffer period may range between 120 and 200 ms without significant impact on hand movement accuracy.
Resumo:
Objective: To evaluate the effect of robot-mediated therapy on arm dysfunction post stroke. Design: A series of single-case studies using a randomized multiple baseline design with ABC or ACB order. Subjects (n = 20) had a baseline length of 8, 9 or 10 data points. They continued measurement during the B - robot-mediated therapy and C - sling suspension phases. Setting: Physiotherapy department, teaching hospital. Subjects: Twenty subjects with varying degrees of motor and sensory deficit completed the study. Subjects attended three times a week, with each phase lasting three weeks. Interventions: In the robot-mediated therapy phase they practised three functional exercises with haptic and visual feedback from the system. In the sling suspension phase they practised three single-plane exercises. Each treatment phase was three weeks long. Main measures: The range of active shoulder flexion, the Fugl-Meyer motor assessment and the Motor Assessment Scale were measured at each visit. Results: Each subject had a varied response to the measurement and intervention phases. The rate of recovery was greater during the robot-mediated therapy phase than in the baseline phase for the majority of subjects. The rate of recovery during the robot-mediated therapy phase was also greater than that during the sling suspension phase for most subjects. Conclusion: The positive treatment effect for both groups suggests that robot-mediated therapy can have a treatment effect greater than the same duration of non-functional exercises. Further studies investigating the optimal duration of treatment in the form of a randomized controlled trial are warranted.