931 resultados para virulence markers
Resumo:
We describe a scaling method for templating digital radiographs using conventional acetate templates independent of template magnification without the need for a calibration marker. The mean magnification factor for the radiology department was determined (119.8%, range117%-123.4%). This fixed magnification factor was used to scale the radiographs by the method described. 32 femoral heads on postoperative THR radiographs were then measured and compared to the actual size. The mean absolute accuracy was within 0.5% of actual head size (range 0 to 3%) with a mean absolute difference of 0.16mm (range 0-1mm, SD 0.26mm). Intraclass Correlation Coefficient (ICC) showed excellent reliability for both inter and intraobserver measurements with ICC scores of 0.993 (95% CI 0.988-0.996) for interobserver measurements and intraobserver measurements ranging between 0.990-0.993 (95% CI 0.980-0.997).
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and non-contact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
PKU is a genetically inherited inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase. The failure of this enzyme causes incomplete metabolism of protein ingested in the diet, specifically the conversion of one amino acid, phenylalanine, to tyrosine, which is a precursor to the neurotransmitter dopamine. Rising levels of phenylalanine is toxic to the developing brain, disrupting the formation of white matter tracts. The impact of tyrosine deficiency is not as well understood, but is hypothesized to lead to a low dopamine environment for the developing brain. Detection in the newborn period and continuous treatment (a low protein phe-restricted diet supplemented with phenylalanine-free protein formulas) has resulted in children with early and continuously treated PKU now developing normal I.Q. However, deficits in executive function (EF) are common, leading to a rate of Attention Deficit Hyperactivity Disorder (ADHD) up to five times the norm. EF worsens with exposure to higher phenylalanine levels, however recent research has demonstrated that a high phenylalanine to tyrosine ratio (phenylalanine:tyrosine ratio), which is hypothesised to lead to poorer dopamine function, has a more negative impact on EF than phenylalanine levels alone. Research and treatment of PKU is currently phenylalanine-focused, with little investigation of the impact of tyrosine on neuropsychological development. There is no current consensus as to the veracity of tyrosine monitoring or treatment in this population. Further, the research agenda in this population has demonstrated a primary focus on EF impairment alone, even though there may be additional neuropsychological skills compromised (e.g., mood, visuospatial deficits). The aim of this PhD research was to identify residual neuropsychological deficits in a cohort of children with early and continuously treated phenylketonuria, at two time points in development (early childhood and early adolescence), separated by eight years. In addition, this research sought to determine which biochemical markers were associated with neuropsychological impairments. A clinical practice survey was also undertaken to ascertain the current level of monitoring/treatment of tyrosine in this population. Thirteen children with early and continuously treated PKU were tested at mean age 5.9 years and again at mean age 13.95 years on several neuropsychological measures. Four children with hyperphenylalaninemia (a milder version of PKU) were also tested at both time points and provide a comparison group in analyses. Associations between neuropsychological function and biochemical markers were analysed. A between groups analysis in adolescence was also conducted (children with PKU compared to their siblings) on parent report measures of EF and mood. Minor EF impairments were evident in the PKU group by age 6 years and these persisted into adolescence. Life-long exposure to high phenylalanine:tyrosine ratio and/or low tyrosine independent of phenylalanine were significantly associated with EF impairments at both time points. Over half the children with PKU showed severe impairment on a visuospatial task, and this was associated only with concurrent levels of tyrosine in adolescence. Children with PKU also showed a statistically significant decline in a language comprehension task from 6 years to adolescence (going from normal to subnormal), this deficit was associated with lifetime levels of phenylalanine. In comparison, the four children with hyperphenylalaninemia demonstrated normal function at both time points, across all measures. No statistically significant differences were detected between children with PKU and their siblings on the parent report of EF and mood. However, depressive symptoms were significantly correlated with: EF; long term high phe:tyr exposure; and low tyrosine levels independent of phenylalanine. The practice survey of metabolic clinics from 12 countries indicated a high level of variability in terms of monitoring/treatment of tyrosine in this population. Whilst over 80% of clinics surveyed routinely monitored tyrosine levels in their child patients, 25% reported treatment strategies to increase tyrosine (and thereby lower the phenylalanine:tyrosine ratio) under a variety of patient presentation conditions. Overall, these studies have shown that EF impairments associated with PKU provide support for the dopamine-deficiency model. A language comprehension task showed a different trajectory, serving a timely reminder that non-EF functions also remain vulnerable in this population; and that normal function in childhood does not guarantee normal function by adolescence. Mood impairments were associated with EF impairments as well as long term measures of phenylalanine:tyrosine and/or tyrosine. The implications of this research for enhanced clinical guidelines are discussed given varied current practice.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
Eating behaviour traits, namely Disinhibition and Restraint, have the potential to exert an effect on food intake and energy balance. The effectiveness of exercise as a method of weight management could be influenced by these traits. Fifty eight overweight and obese participants completed 12-weeks of supervised exercise. Each participant was prescribed supervised exercise based on an expenditure of 500 kcal/session, 5 d/week for 12-weeks. Following 12-weeks of exercise there was a significant reduction in mean body weight (-3.26 ± 3.63 kg), fat mass (FM: -3.26 ± 2.64 kg), BMI (-1.16 ± 1.17 kg/m2)and waist circumference (WC: -5.0 ± 3.23 cm). Regression analyses revealed a higher baseline Disinhibition score was associated with a greater reduction in BMI and WC, while Internal Disinhibition was associated with a larger decrease in weight, %FM and WC. Neither baseline Restraint or Hunger were associated with any of the anthropometric markers at baseline or after 12-weeks. Furthermore, after 12-weeks of exercise, a decrease in Disinhibition and increase in Restraint were associated with a greater reduction in WC, whereas only Restraint was associated with a decrease in weight. Post-hoc analysis of the sub-factors revealed a decrease in External Disinhibition and increase in Flexible Restraint were associated with weight loss. However, an increase in Rigid Restraint was associated with a reduction in %FM and WC. These findings suggest that exercise-induced weight loss is more marked in individuals with a high level of Disinhibition. These data demonstrate the important roles that Disinhibition and Restraint play in the relationship between exercise and energy balance.
Resumo:
The multiple banded antigen (MBA) is a predicted virulence factor of Ureaplasma species. Antigenic variation of the MBA is a potential mechanism by which ureaplasmas avoid immune recognition and cause chronic infections of the upper genital tract of pregnant women. We tested whether the MBA is involved in the pathogenesis of intra-amniotic infection and chorioamnionitis by injecting virulent or avirulent-derived ureaplasma clones (expressing single MBA variants) into the amniotic fluid of pregnant sheep. At 55 days of gestation pregnant ewes (n = 20) received intra-amniotic injections of virulent-derived or avirulent-derived U. parvum serovar 6 strains (2×104 CFU), or 10B medium (n = 5). Amniotic fluid was collected every two weeks post-infection and fetal tissues were collected at the time of surgical delivery of the fetus (140 days of gestation). Whilst chronic colonisation was established in the amniotic fluid of animals infected with avirulent-derived and virulent-derived ureaplasmas, the severity of chorioamnionitis and fetal inflammation was not different between these groups (p>0.05). MBA size variants (32–170 kDa) were generated in vivo in amniotic fluid samples from both the avirulent and virulent groups, whereas in vitro antibody selection experiments led to the emergence of MBA-negative escape variants in both strains. Anti-ureaplasma IgG antibodies were detected in the maternal serum of animals from the avirulent (40%) and virulent (55%) groups, and these antibodies correlated with increased IL-1β, IL-6 and IL-8 expression in chorioamnion tissue (p<0.05). We demonstrate that ureaplasmas are capable of MBA phase variation in vitro; however, ureaplasmas undergo MBA size variation in vivo, to potentially prevent eradication by the immune response. Size variation of the MBA did not correlate with the severity of chorioamnionitis. Nonetheless, the correlation between a maternal humoral response and the expression of chorioamnion cytokines is a novel finding. This host response may be important in the pathogenesis of inflammation-mediated adverse pregnancy outcomes.
Resumo:
This study aimed to gauge the presence of markers of chronic disease, as a basis for food and nutrition policy in correctional facilities. One hundred and twenty offenders, recruited from a Queensland Correctional Centre, provided informed consent and completed both dietary interviews and physical measurements. Mean age of the sample was 35.5 ± 12 years (range = 19–77 yrs); mean age of the total population (n = 945) was 32.8 ± 10 years (range = 19–80 yrs). Seventy-nine participants also provided fasting blood samples. The mean body mass index (BMI) was 27 ± 3.5 kg/m2; 72% having a BMI > 25 kg/m2. Thirty-three percent were classified overweight or obese using waist circumference (mean = 92 ± 10 cm). Mean blood pressure measurement was systolic = 130 ± 14 mmHg and diastolic = 73 ± 10 mmHg. Twenty-four percent were classified as hypertensive of whom three were on antihypertensive medication. Eighteen percent had elevated triglycerides, and 40% unfavourable total cholesterol to HDL ratios. Homeostatic Model Assessment (HOMA scores) were calculated from glucose and insulin. Four participants were insulin resistant, two of whom had known diabetes. Metabolic syndrome, based on waist circumference (adjusted for ethnicity), blood lipids, blood pressure and plasma glucose indicated that 25% (n = 20) were classified with metabolic syndrome. Eighty-four percent (n = 120) reported some physical activity each day, with 51 percent participating ≥two times daily. Fifty-four percent reported smoking with an additional 20% having smoked in the past. Findings suggest that waist circumference rather than weight and BMI only should be used in this group to determine weight status. The data suggest that markers of chronic disease are present and that food and nutrition policy must reflect this. Further analysis is being completed to determine relevant policy initiatives.
Resumo:
Habitat fragmentation as a result of urbanisation is a growing problem for native lizard species. The Eastern Water Dragon (Physignathus lesueurii) is a social arboreal agamid lizard, native to Australia. This species represents an ideal model species to investigate the effect of urbanisation because of their prominent abundance in the urban landscape. Here we describe the isolation and characterisation of a novel set of 74 di-, tri-, and tetramicrosatellites from which 18 were selected and optimised into two multiplexes. The 18 microsatellites generated a total 148 alleles across the two populations. The number of alleles per locus varied from 2 to 18 alleles and measures of Ho and He varied from 0.395 to 0.877 and from 0.441 to 0.880, respectively. We also present primers for four novel mitochondrial DNA (mtDNA) markers. The combined length of the four mtDNA marker pairs was 2,528 bp which included 15 nucleotides changes. In comparison to threatened species, which are generally characterised by small population sizes, the Eastern Water Dragon represents an ideal model species to investigate the effect of urbanisation on their behavioural ecology and connectivity patterns among populations.
Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)
Resumo:
Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.