968 resultados para ventricular remodeling.
Resumo:
BACKGROUND: The relevance of left ventricular (LV) geometric pattern after myocardial infarction is not known. OBJECTIVES: To analyze the presence of different LV geometric patterns and teir impact as a predictor of remodeling in patients with myocardial infarction. METHODS: Patients with anterior acute myocardial infarction (n = 80) were divided according to the geometric pattern: normal (normal left ventricular mass index [LVMI] and normal relative wall thickness [RWT]), concentric remodeling (normal LVMI and increased RWT), concentric hypertrophy (increased LVMI and RWT) and eccentric hypertrophy (increased LVMI and normal RWT). After six months, echocardiographic assessment was repeated. RESULTS: Four patients died. Of the survivors, 41 showed remodeling (R +), whereas 39 did not (R-). Considering the geometric pattern, the cases were distributed as follows: 24 patients with normal pattern, 13 with concentric remodeling, 29 with concentric hypertrophy and 14 with eccentric hypertrophy. Patients who showed remodeling had larger infarction sizes analyzed by peak CPK (R + = 4,610 (1,688-7,970), R- = 1,442 (775-4247), p <0.001) and CK-MB (R + = 441 (246 - 666), R- = 183 (101-465), p <0.001), trend towards higher prevalence of concentric remodeling (R+ = 10, R- = 3, p = 0.08) and lower prevalence of eccentric hypertrophy (R + = 2 R- = 12, p = 0.006). In the multivariate regression analysis, infarction size was a predictor (OR = 1.01, p = 0.020) and eccentric hypertrophy was a protective factor (OR = 0.189, p = 0.046) of ventricular remodeling after coronary occlusion. CONCLUSION: The LV geometric pattern of can have an impact on the remodeling process in patients with myocardial infarction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cardiac or ventricular remodeling is characterized by molecular, cellular, and interstitial alterations that lead to changes in heart size, mass, geometry and function in response to a given insult. Currently, tobacco smoke exposure is recognized as one of these insults. Indeed, tobacco smoke exposure induces the enlargement of the left-sided cardiac chambers, myocardial hypertrophy, and ventricular dysfunction. Potential mechanisms for these alterations include hemodynamic and neurohormonal changes, oxidative stress, inflammation, nitric oxide bioavailability, matrix metalloproteinases and mitogen-activated protein kinase activation. This review will focus on the concepts, relevance, and potential mechanisms of cardiac remodeling induced by tobacco smoke.
Resumo:
Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)
Resumo:
The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.
Resumo:
Background: Monocytes are implicated in the initiation and progression of theatherosclerotic plaque contributing to plaque instability and rupture. Little is knownof the role played by the 3 phenotypically and functionally different monocytesubpopulations in determining ventricular remodeling following ST elevation my-ocardial infarction (STEMI). Mon1 are "classical" inflammatory monocytes, whilstMon3 are considered reparative with fibroblast deposition ability. The function ofthe newly described Mon2 is yet to be elucidated. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treatedwith percutaneous revascularization were recruited within the first 24 hours. Pe-ripheral blood monocyte subpopulations were enumerated and characterizedusing flow cytometry after staining for CD14, CD16 and CCR2. Phenotypi-cally, monocyte subpopulations are defined as: CD14+CD16-CCR2+ (Mon1),CD14+CD16+CCR+ (Mon2) and CD14lowCD16+CCR2- (Mon3) cells. Transtho-racic 2D echocardiography was performed within 7 days and 6 months post infarctto assess ventricular volumes, mass, systolic, and diastolic functions. Results: Using linear regression analysis higher counts for Mon1, and lowercounts for Mon2 and Mon3 were significantly associated with the baseline leftventricular ejection fraction (LVEF) within seven days post infarction. At 6 monthspost STEMI lower counts of Mon2 remained positively associated with decreasedLVEF (p value= 0.002).Monocyte subsets correlation with LVEFMonocytes mean florescence Baseline left ventricular Left ventricular ejectionintensity (cells/μl) ejection fraction (%) fraction (%) at 6 months post infarctβ-value P-valueβ-value P-valueTotal Mon0.31 P<0.001 0.360.009Mon 10.019 0.020.070.62Mon 2−0.28 0.001 −0.420.002Mon 3−0.27 0.001 −0.180.21 Conclusion: Peripheral monocytes of all three subsets correlate with LVEF af-ter a myocardial infarction. High counts of the inflammatory Mon1 are associatedwith reduction in the baseline LVEF. Post remodelling, the convalescent EF wasindependently predicted by monocyte subpopulation 2. As lower counts depictednegative ventricular remodeling, this suggests a reparative role for the newly de-scribed Mon2, possibly via myofibroblast deposition and angiogenesis, in contrastto an anticipated inflammatory role.
Resumo:
In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.
Resumo:
The objective of this study was to investigate the nature and biomechanical properties of collagen fibers within the human myocardium. Targeting cardiac interstitial abnormalities will likely become a major focus of future preventative strategies with regard to the management of cardiac dysfunction. Current knowledge regarding the component structures of myocardial collagen networks is limited, further delineation of which will require application of more innovative technologies. We applied a novel methodology involving combined confocal laser scanning and atomic force microscopy to investigate myocardial collagen within ex-vivo right atrial tissue from 10 patients undergoing elective coronary bypass surgery. Immuno-fluorescent co-staining revealed discrete collagen I and III fibers. During single fiber deformation, overall median values of stiffness recorded in collagen III were 37±16% lower than in collagen I [p<0.001]. On fiber retraction, collagen I exhibited greater degrees of elastic recoil [p<0.001; relative percentage increase in elastic recoil 7±3%] and less energy dissipation than collagen III [p<0.001; relative percentage increase in work recovered 7±2%]. In atrial biopsies taken from patients in permanent atrial fibrillation (n=5) versus sinus rhythm (n=5), stiffness of both collagen fiber subtypes was augmented (p<0.008). Myocardial fibrillar collagen fibers organize in a discrete manner and possess distinct biomechanical differences; specifically, collagen I fibers exhibit relatively higher stiffness, contrasting with higher susceptibility to plastic deformation and less energy efficiency on deformation with collagen III fibers. Augmented stiffness of both collagen fiber subtypes in tissue samples from patients with atrial fibrillation compared to those in sinus rhythm are consistent with recent published findings of increased collagen cross-linking in this setting.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.
Resumo:
Diversas evidências comprovam que a obesidade está associada a alterações estruturais e funcionais do coração em modelos humanos e animais. Outros estudos recentes também demonstram que a obesidade humana está associada com alterações na função e na estrutura vascular, especialmente em grandes e médias artérias. Estudos epidemiológicos têm confirmado que a obesidade é um fator de risco significativo para o aparecimento de proteinúria e de doença renal terminal em uma população normal. Com o objetivo de determinar as alterações morfológicas relacionadas ao remodelamento cardíaco, vascular e renal em um modelo experimental de obesidade induzida pelo glutamato monossódico (MSG) e os efeitos da metformina sobre estes achados, foram estudados 25 ratos divididos em cinco grupos: controle com 16 e 22 semanas (CON-16 e CON-22); obeso com 16 e 22 semanas (MSG-16 e MSG-22) e obeso + metformina (MET-22) 300mg/Kg/dia por via oral. A caracterização da resistência à insulina foi feita através da medida da insulina plasmática e cálculo do índice de HOMA-IR. As análises morfológicas e quantificação do colágeno miocárdico foram feitos pelo sistema de imagem Image Pro Plus analysis. A pressão arterial sistólica foi levemente maior no grupo MSG-22, adquirindo significância estatística quando comparada com o grupo MSG-16 (1222 vs 1082 mmHg, p<0,05). Por outro lado, o grupo MET-22 mostrou níveis mais baixos de pressão arterial (1181 mmHg), sem alcançar diferença significativa. No grupo de animais obesos, foi observado aumento na relação média-lumen com 16 semanas (39,93,7 vs 30,22,0 %, p<0,05) e com 22 semanas (39,81,3 vs 29,51,2%, p<0,05), que foi reduzida com o uso da metformina (31,50,9%). O depósito de colágeno na área perivascular no ventrículo esquerdo foi significativamente maior no grupo MSG-22 (1,390,06 vs 0,830,06 % no CON-22, p<0,01), sendo atenuado pela metformina (1,020,04%). No rim, a área seccional transversa das arteríolas intrarrenais foi semelhante entre os grupos (18,52,2 no CON-16; 19,93,7 no MSG-16; 18,93,1 no CON-22; 21,81,5 no MSG-22; 20,21,4 no MET-22). Foi observado aumento da área glomerular no grupo MSG-22 (141,34,5 vs 129,50,5 m2), mas sem significância estatística. Em conclusão, nos ratos com obesidade induzida pelo MSG, com resistência à insulina, as alterações cardíacas foram mais proeminentes do que as alterações renais. No coração foram observados sinais de remodelamento vascular hipertrófico nas pequenas artérias intramiocárdicas e evidências de fibrose miocárdica mais proeminente na área perivascular, alterações que foram, pelo menos parcialmente, atenuadas com o uso de metformina durante seis semanas, mostrando que esta droga pode ser benéfica na prevenção de complicações cardíacas, vasculares e renais associadas com a obesidade.
Resumo:
L’objectif central de cette thèse de Doctorat était d’investiguer les dysfonctions mitochondriales qui surviennent précocement au cours de la phase compensée du remodelage ventriculaire pathologique et qui pourraient jouer un rôle causal dans la progression vers l’insuffisance cardiaque. Nos travaux antérieurs, réalisés à l’aide d’un modèle de surcharge volumique chronique induite par une fistule aorto-cavale (ACF) chez le Rat WKHA, ont montré qu’au cours du remodelage ventriculaire, les mitochondries développaient une vulnérabilité à l’ouverture du pore de perméabilité transitionnelle (PTP : un élément clé de la signalisation de la mort cellulaire) [1]. Ceci était observable au stade compensé du remodelage en absence des dysfonctions mitochondriales majeures typiquement observées dans le cœur insuffisant. Ces résultats nous ont amenés à suggérer que la vulnérabilité à l’ouverture du PTP pourrait constituer un mécanisme précoce favorisant la progression de la cardiopathie. Dans l’étude 1 de cette thèse, nous avons tenté de tester cette hypothèse en induisant une ACF chez deux souches de rats affichant de très nettes différences au niveau de la propension à développer l’insuffisance cardiaque : les souches WKHA et Sprague Dawley (SD). Nos études in vitro sur organelles isolées et in situ sur l’organe entier ont permis de confirmer que, dans le cœur ACF, les mitochondries développent une vulnérabilité à l’ouverture du PTP et à l’activation de la voie mitochondriale de la mort cellulaire lorsqu’exposées à des stress pertinents à la pathologie (surcharge calcique, ischémie-reperfusion [I-R]). Cependant, bien que comparativement aux animaux WKHA, les animaux SD démontraient un remodelage ventriculaire plus rapide et prononcé et une progression précoce vers l’insuffisance cardiaque, aucune différence n’était observable entre les deux groupes au niveau des dysfonctions mitochondriales, suggérant quelles ne sont pas à l’origine de la progression plus rapide de la pathologie chez la souche SD, à tout le moins en réponse à la surcharge volumique. Nous avons par la suite déterminé, à l’aide des mêmes approches expérimentales, si cette vulnérabilité mitochondriale était observable dans une cardiopathie d’étiologie différente, plus spécifiquement celle qui est associée à la dystrophie musculaire de Duchenne (DMD), une maladie génétique causée par une mutation de la protéine dystrophine. Nos études menées (études 2-4) sur de jeunes souris mdx (le modèle murin de la DMD) exemptes de tout signe clinique de cardiopathie n’ont révélé aucune différence au niveau des fonctions mitochondriales de base. Cependant, tout comme dans le modèle d’ACF, les mitochondries dans le cœur de souris mdx étaient significativement plus vulnérables à l’ouverture du PTP lorsque soumises à une I-R (étude 2). Par ailleurs, nous avons démontré que l’administration aiguë de sildénafil aux souris mdx induisait une abolition de l’ouverture du PTP et de ses conséquences signalétiques, une diminution marquée du dommage tissulaire et une meilleure récupération fonctionnelle à la suite de l’I-R (étude 3). Nous avons ensuite testé chez la souris mdx l’administration aiguë de SS31, un peptide anti-oxydant ciblé aux mitochondries, cependant aucun effet protecteur n’a été observé, suggérant que le tamponnement des radicaux libres est d’une utilité limitée si les perturbations de l’homéostasie calcique typiques à cette pathologie ne sont pas traitées simultanément (étude 4). Globalement, les travaux effectués au cours de cette thèse démontrent que la vulnérabilité à l’ouverture du PTP constitue une dysfonction précoce et commune qui survient au cours de remodelages ventriculaires pathologiques d’étiologies différentes. Par ailleurs, ces travaux suggèrent des stratégies d’intervention pharmacologiques ciblant ce processus, dont l’efficacité pour la prévention de l’insuffisance cardiaque demande à être établie.
Resumo:
Objectives: To analyze the potential contribution of contractility state and ventricular geometry to the development of heart failure in rats with aortic stenosis.Methods: Rats were divided into three groups: compensated aortic stenosis (AS, n = 11), heart failure AS (n = 12) and control rats (C, n = 13).Results: After 21 weeks, failing AS rats presented higher systolic (C = 36.6 +/- 3.1, AS-78.6 +/- 4.8*, failing AS = 104.6 +/- 7.8*) and diastolic meridian stress (C = 6.9 +/- 0.4, AS = 20.1 +/- 1.1*, failing AS = 43.2 +/- 3.2*(dagger)), hydroxyproline (C = 3.6 +/- 0.7 mg/g, AS = 6.6 +/- 0.6* mg/g, failing AS = 9.2 +/- 1.4*(dagger) mg/g) and cross-sectional area (C = 338 +/- 25 mu m(2), AS = 451 +/- 32* mu m(2), failing AS = 508 +/- 36*(dagger) mu m(2)), in comparison with control and compensated AS animals (*p < 0.05 vs. control, (dagger)p < 0.05 vs. AS). In the isometric contraction study, considering the time from peak tension to 50% relaxation (RT50), the relative variation responses, following post-rest contraction and increase in Ca2+ concentration, were higher in failing AS than compensated AS animals. In contrast, following post-rest contraction, compensated AS group presented higher values of the peak developed tension (DT) than failing AS group. Following beta-adrenergic stimulation, control animals presented higher values of +dT/dt and -dT/dt than AS animals. In addition, failing AS animals presented higher TPT values than compensated AS animals.Conclusion: Myocardial contractile dysfunction contributes to the development of heart failure in rats with aortic stenosis. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
The objective of this study was to investigate the effects of exposure to tobacco smoke (ETS) in rats that were or were not supplemented with dietary beta-carotene (BC), on ventricular remodeling and survival after myocardial infarction (MI). Rats (n = 189) were allocated to 4 groups: the control group, n = 45; group BC administered 500 mg/kg diet, n = 49, BC supplemented rats; group ETS, n = 55, rats exposed to tobacco smoke; and group BC+ETS, n = 40. Wistar rats weighing 100 g were administered one of the treatments until they weighed 200 to 250 g (similar to 5 wk). The ETS rats were exposed to cigarette smoke for 30 min 4 times/d, in a chamber connected to a smoking device. After reaching a weight of 200-250 g, rats were subjected to experimental MI (coronary artery occlusion) and mortality rates were determined over the next 105 d. In addition, echocardiographic, isolated heart, morphometrical, and biochemical studies were performed. Mortality data were tested using Kaplan-Meyer curves and other data by 2-way ANOVA. Survival rates were greater in the ETS group (58.2%) than in the control (33.3%) (P = 0.001) and BC+ETS rats (30.0%) (P = 0.007). The groups did not differ in the other comparisons. Left ventricular end-diastolic diameter normalized to body weight was greater and maximal systolic pressures were lower in the ETS groups than in non-ETS groups. Previous exposure to tobacco smoke induced a process of cardiac remodeling after MI. There is a paradoxical protector effect with tobacco smoke exposure, characterized by lower mortality, which is offset by BC supplementation.