928 resultados para ventricular arrhythmias


Relevância:

60.00% 60.00%

Publicador:

Resumo:

After myocardial infarction, optimal clinical management depends critically on cardiac imaging. Remodelling and heart failure, presence of inducible ischaemia, presence of dysfunctional viable myocardium, future risk of adverse events including risk of ventricular arrhythmias, need for anticoagulation, and other questions should be addressed by cardiac imaging. Strengths and weaknesses, recent developments, choice, and timing of the different non-invasive techniques are reviewed for this frequent clinical scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hERG voltage-gated potassium channel mediates the cardiac I(Kr) current, which is crucial for the duration of the cardiac action potential. Undesired block of the channel by certain drugs may prolong the QT interval and increase the risk of malignant ventricular arrhythmias. Although the molecular determinants of hERG block have been intensively studied, not much is known about its stereoselectivity. Levo-(S)-bupivacaine was the first drug reported to have a higher affinity to block hERG than its enantiomer. This study strives to understand the principles underlying the stereoselectivity of bupivacaine block with the help of mutagenesis analyses and molecular modeling simulations. Electrophysiological measurements of mutated hERG channels allowed for the identification of residues involved in bupivacaine binding and stereoselectivity. Docking and molecular mechanics simulations for both enantiomers of bupivacaine and terfenadine (a non-stereoselective blocker) were performed inside an open-state model of the hERG channel. The predicted binding modes enabled a clear depiction of ligand-protein interactions. Estimated binding affinities for both enantiomers were consistent with electrophysiological measurements. A similar computational procedure was applied to bupivacaine enantiomers towards two mutated hERG channels (Tyr652Ala and Phe656Ala). This study confirmed, at the molecular level, that bupivacaine stereoselectively binds the hERG channel. These results help to lay the foundation for structural guidelines to optimize the cardiotoxic profile of drug candidates in silico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferolateral early repolarization (ER) and Brugada syndrome manifest with J waves. Isoproterenol suppresses recurrent ventricular arrhythmias while reducing J waves in both disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS: Data on moderately cold water immersion and occurrence of arrhythmias in chronic heart failure (CHF) patients are scarce. METHODS AND RESULTS: We examined 22 male patients, 12 with CHF [mean age 59 years, ejection fraction (EF) 32%, NYHA class II] and 10 patients with stable coronary artery disease (CAD) without CHF (mean age 65 years, EF 52%). Haemodynamic effects of water immersion and swimming in warm (32 degrees C) and moderately cold (22 degrees C) water were measured using an inert gas rebreathing method. The occurrence of arrhythmias during water activities was compared with those measured during a 24 h ECG recording. Rate pressure product during water immersion up to the chest was significantly higher in moderately cold (P = 0.043 in CHF, P = 0.028 in CAD patients) compared with warm water, but not during swimming. Rate pressure product reached 14200 in CAD and 12 400 in CHF patients during swimming. Changes in cardiac index (increase by 5-15%) and oxygen consumption (increase up to 20%) were of similar magnitude in moderately cold and warm water. Premature ventricular contractions (PVCs) increased significantly in moderately cold water from 15 +/- 41 to 76 +/- 163 beats per 30 min in CHF (P = 0.013) but not in CAD patients (20 +/- 33 vs. 42 +/- 125 beats per 30 min, P = 0.480). No ventricular tachycardia was noted. CONCLUSION: Patients with compensated CHF tolerate water immersion and swimming in moderately cold water well. However, the increase in PVCs raises concerns about the potential danger of high-grade ventricular arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alteration of neurohormonal homeostasis is a hallmark of the pathophysiology of chronic heart failure (CHF). In particular, overactivation of the renin-angiotensin-aldosterone system and the sympathetic catecholaminergic system is consistently observed. Chronic overactivation of these hormonal pathways leads to a detrimental arrhythmogenic remodeling of cardiac tissue due to dysregulation of cardiac ion channels. Sudden cardiac death resulting from ventricular arrhythmias is a major cause of mortality in patients with CHF. All the drug classes known to reduce mortality in patients with CHF are neurohormonal blockers. The aim of this review was to provide an overview of how cardiac ion channels are regulated by hormones known to play a central role in the pathogenesis of CHF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High sympathetic tone creates a significant risk for ventricular arrhythmias and sudden death, which can especially affect patients after a myocardial infarction (MI) when exercising in a hypoxic environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Functional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains. OBJECTIVE This study sought to present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever-induced ventricular arrhythmias. METHODS A 22-month-old boy presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open-reading frame/splice mutational analysis of the 12 known long QT syndrome susceptibility genes was performed. RESULTS The infant had 2 SCN5A mutations: a maternally inherited N-terminal frame shift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, whereas co-expression of SCN5A-WT with SCN5A-R34fs/60 did not. CONCLUSIONS A severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-amino-acid fusion peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing Na(V)1.5 channels in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long QT syndrome (LQTS) is an arrhythmogenic ion channel disorder characterized by severely abnormal ventricular repolarization, which results in prolongation of the electrocardiographic QT interval. The condition is associated with sudden cardiac death due to malignant ventricular arrhythmias similar in form to the hallmark torsade de pointes. Eleven years after the identification of the principle cardiac channels involved in the condition, hundreds of mutations in, to date, 10 genes have been associated with the syndrome. Genetic investigations carried out up until the present have shown that, although the severe form of the disease is sporadic, there are a number of common polymorphisms in genes associated with the condition that may confer susceptibility to the development of torsade de pointes in some individuals, particularly when specific drugs are being administered. Moreover, some polymorphisms have been shown to have regulatory properties that either enhance or counteract a particular mutation's impact. Understanding of the molecular processes underlying the syndrome has enabled treatment to be optimized and has led to better survival among sufferers, thereby demonstrating a key correspondence between genotype, phenotype and therapy. Despite these developments, a quarter of patients do not have mutations in the genes identified to date. Consequently, LQTS continues to be an area of active research. This article contains a summary of the main clinical and genetic developments concerning the syndrome that have taken place during the last decade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long QT Syndrome (LQTS) is a cardiac channelopathy characterized by prolonged ventricular repolarization and increased risk to sudden death secondary to ventricular dysrrhythmias. Was the first cardiac channelopathy described and is probably the best understood. After a decade of the sentinel identification of ion channel mutation in LQTS, genotype-phenotype correlations have been developed along with important improvement in risk stratification and genetic guided-treatment. Genetic screening has shown that LQTS is more frequent than expected and interestingly, ethnic specific polymorphism conferring increased susceptibility to drug induced QT prolongation and torsades de pointes have been identified. A better understanding of ventricular arrhythmias as an adverse effect of ion channel binding drugs, allow the development of more safety formulas and better control of this public health problem. Progress in understanding the molecular basis of LQTS has been remarkable; eight different genes have been identified, however still 25% of patients remain genotype-negative. This article is an overview of the main LQTS knowledge developed during the last years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Marfan syndrome (MFS) is a variable, autosomal-dominant disorder of the connective tissue. In MFS serious ventricular arrhythmias and sudden cardiac death (SCD) can occur. The aim of this prospective study was to reveal underlying risk factors and to prospectively investigate the association between MFS and SCD in a long-term follow-up. METHODS 77 patients with MFS were included. At baseline serum N-terminal pro-brain natriuretic peptide (NT-proBNP), transthoracic echocardiogram, 12-lead resting ECG, signal-averaged ECG (SAECG) and a 24-h Holter ECG with time- and frequency domain analyses were performed. The primary composite endpoint was defined as SCD, ventricular tachycardia (VT), ventricular fibrillation (VF) or arrhythmogenic syncope. RESULTS The median follow-up (FU) time was 868 days. Among all risk stratification parameters, NT-proBNP remained the exclusive predictor (hazard ratio [HR]: 2.34, 95% confidence interval [CI]: 1.1 to 4.62, p=0.01) for the composite endpoint. With an optimal cut-off point at 214.3 pg/ml NT-proBNP predicted the composite primary endpoint accurately (AUC 0.936, p=0.00046, sensitivity 100%, specificity 79.0%). During FU, seven patients of Group 2 (NT-proBNP ≥ 214.3 pg/ml) reached the composite endpoint and 2 of these patients died due to SCD. In five patients, sustained VT was documented. All patients with a NT-proBNP<214.3 pg/ml (Group 1) experienced no events. Group 2 patients had a significantly higher risk of experiencing the composite endpoint (logrank-test, p<0.001). CONCLUSIONS In contrast to non-invasive electrocardiographic parameter, NT-proBNP independently predicts adverse arrhythmogenic events in patients with MFS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.