977 resultados para vector-scalar potential
Resumo:
Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general N-Higgs-doublet model potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
We calculate mass shift of the J/Ψ meson in nuclear matter arising from the modification of DD, DD* and D*D* meson loop contributions to the J/Ψ self-energy. The estimate includes the in-medium D and D* meson masses consistently. The J/Ψ mass shift (scalar potential) calculated is negative (attractive), and is complementary to the attractive potential obtained from the QCD color van der Waals forces. Some results for the J/Ψ -nuclear bound state energies are also presented. © 2011 American Institute of Physics.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.
Resumo:
In this thesis, we shall work in the framework of type IIB Calabi-Yau flux compactifications and present a detailed review of moduli stabilisation studying in particular the phenomenological implications of the LARGE-volume scenario (LVS). All the physical relevant quantities such as moduli masses and soft-terms, are computed and compared to the phenomenological constraints that today guide the research. The structure of this thesis is the following. The first chapter introduces the reader to the fundamental concepts that are essentially supersymmetry-breaking, supergravity and string moduli, which represent the basic framework of our discussion. In the second chapter we focus our attention on the subject of moduli stabilisation. Starting from the structure of the supergravity scalar potential, we point out the main features of moduli dynamics, we analyse the KKLT and LARGE-volume scenario and we compute moduli masses and couplings to photons which play an important role in the early-universe evolution since they are strictly related to the decay rate of moduli particles. The third chapter is then dedicated to the calculation of soft-terms, which arise dynamically from gravitational interactions when moduli acquire a non-zero vacuum expectation value (VeV). In the last chapter, finally, we summarize and discuss our results, underling their phenomenological aspects. Moreover, in the last section we analyse the implications of the outcomes for standard cosmology, with particular interest in the cosmological moduli problem.
Resumo:
We revise the SU(3)-invariant sector of N = 8 supergravity with dyonic SO(8) gaugings. By using the embedding tensor formalism, analytic expressions for the scalar potential, superpotential(s) and fermion mass terms are obtained as a function of the electromagnetic phase ω and the scalars in the theory. Equipped with these results, we explore non-supersymmetric AdS critical points at ω ≠ 0 for which perturbative stability could not be analysed before. The ω-dependent superpotential is then used to derive first-order flow equations and obtain new BPS domain-wall solutions at ω ≠ 0. We numerically look at steepest-descent paths motivated by the (conjectured) RG flows.
Resumo:
We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.
Resumo:
The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.
Resumo:
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (sigma'(v0)), soil type, shear wave velocity (V-s) and earthquake parameters such as peak horizontal acceleration (a(max)) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are sigma'(v0), soil type. V-s, a(max) and M. In the other model based on shear wave velocity alone uses V-s, a(max) and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.
Resumo:
We present a novel ridge detector that finds ridges on vector fields. It is designed to automatically find the right scale of a ridge even in the presence of noise, multiple steps and narrow valleys. One of the key features of such ridge detector is that it has a zero response at discontinuities. The ridge detector can be applied to scalar and vector quantities such as color. We also present a parallel perceptual organization scheme based on such ridge detector that works without edges; in addition to perceptual groups, the scheme computes potential focus of attention points at which to direct future processing. The relation to human perception and several theoretical findings supporting the scheme are presented. We also show results of a Connection Machine implementation of the scheme for perceptual organization (without edges) using color.