978 resultados para variational cumulant expansion method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode gain spectrum is measured by the Fourier series expansion method for InAs/GaAs quantum-dot (QD) lasers with seven stacks of QDs at different injection currents. Gain spectra with distinctive peaks are observed at the short and long wavelengths of about 1210 nm and 1300 nm. For a QD laser with the cavity length of 1060 mu m, the peak gain of the long wavelength first increases slowly or even decreases with the injection current as the peak gain of the short wavelength increases quickly, and finally increases quickly before approaching the saturated values as the injection current further increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode edges of photonic crystal waveguide with triangular lattice based on a silicon-on-insulator slab are investigated by combination of the effective index method and two-dimensional plane wave expansion method. The variations of waveguide-mode edges with structure parameters of photonic crystal are deduced. When the ratio of the radius of air holes to the lattice constrant, r/Lambda, is fixed and the lattice constant of photonic crystal, Lambda, increases, the waveguide-mode edges shift to longer wavelengths. When Lambda is fixed and r/Lambda increases, the waveguide-mode edges shift to shorter wavelengths. Additionally, when r/Lambda and Lambda are both fixed, the radius of the two-row air holes adjacent to the waveguide increases, the waveguide-mode edges shift to shorter wavelengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3 mu m with a silicon-on-insulator (Sol) substrate is designed by the three-dimensional plane wave expansion method. For TE-like modes, the bandgap in the F-K direction is from 1087nm to 1559nm. The central wavelength in the bandgap is about 1.3 mu m, hence the incident light at wavelength 1.3 mu m will be strongly reflected. Experimentally, such a photonic crystal slab is fabricated on an SOI substrate by the combination of EBL and ICP etching. The measurement of its transmission characteristics shows the bandgap edge in a longer wavelength is about 1540mn. The little discrepancy between the experimental data and the theoretical values is mainly due to the size discrepancy of the fabricated air holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic energy subbands and minigaps in lateral superlattices (LSLs) have been calculated by the plane-wave expansion method. The effect of the lateral modulation on the critical well width at which an indirect-direct (X-Gamma) optical transition occurs in the LSLs is investigated. Our theoretical results are in agreement with the available experimental data. Totally at variance with the previous variation calculational results, the minigaps between the first two subbands in LSLs, as functions of the modulation period, exhibit a maximum value at a specific length and disappear on decreasing the modulation period further. The modulations of several types of lateral potential are also evaluated; the indication is that the out-of-phase modulation on either side of the wells is the strongest while the in-phase modulation is the weakest. Our calculations also show that the effect of the difference between the effective masses of the electrons in the different materials on the subband structures is significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves.. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the full-vector plane-wave expansion method, a kind of PMMA-based polarization-maintaining microstructured optical fibre (PM-mPOF) is theoretically studied. Dependence of the cutoff wavelengths of the two orthogonal polarization states (polarized along the two principal axes of PM-mPOF) on the structure parameters of the fibre is investigated in detail. A single-polarization single-mode (SPSM) PM-mPOF working in the visible region is designed and optimized with the result of the maximum SPSM bandwidth of 140 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.