988 resultados para value distribution
Resumo:
Introduction: Standard Uptake Value (SUV) is a measurement of the uptake in a tumour normalized on the basis of a distribution volume and is used to quantify 18F-Fluorodeoxiglucose (FDG) uptake in tumors, such as primary lung tumor. Several sources of error can affect its accuracy. Normalization can be based on body weight, body surface area (BSA) and lean body mass (LBM). The aim of this study is to compare the influence of 3 normalization volumes in the calculation of SUV: body weight (SUVW), BSA (SUVBSA) and LBM (SUVLBM), with and without glucose correction, in patients with known primary lung tumor. The correlation between SUV and weight, height, blood glucose level, injected activity and time between injection and image acquisition is evaluated. Methods: Sample included 30 subjects (8 female and 22 male) with primary lung tumor, with clinical indication for 18F-FDG Positron Emission Tomography (PET). Images were acquired on a Siemens Biography according to the department’s protocol. Maximum pixel SUVW was obtained for abnormal uptake focus through semiautomatic VOI with Quantification 3D isocontour (threshold 2.5). The concentration of radioactivity (kBq/ml) was obtained from SUVW, SUVBSA, SUVLBM and the glucose corrected SUV were mathematically obtained. Results: Statistically significant differences between SUVW, SUVBSA and SUVLBM and between SUVWgluc, SUVBSAgluc and SUVLBMgluc were observed (p=0.000<0.05). The blood glucose level showed significant positive correlations with SUVW (r=0.371; p=0.043) and SUVLBM (r=0.389; p=0.034). SUVBSA showed independence of variations with the blood glucose level. Conclusion: The measurement of a radiopharmaceutical tumor uptake normalized on the basis of different distribution volumes is still variable. Further investigation on this subject is recommended.
Resumo:
Introduction: Recently, it has been suggested an association between red cell distribution width (RDW) and Crohn’s disease activity index (CDAI), but its use is not yet performed in daily clinical practice. Objectives: To determine whether RDW can be used as a marker of Crohn’s disease (CD) activity. Methods: This was a cross-sectional study including patients with CD, observed consecutively in an outpatient setting between January 1st and September 30th 2013. Blood cell indices, erythrocyte sedimentation rate (ESR), and C-reactive protein were measured. CD activity was determined by CDAI (active disease if CDAI ≥ 150). Associations were analyzed using logistic regression (SPSS version 20). Results: 119 patients (56% female) were included in the study with a mean age of 47 years (SD 15.2). Twenty patients (17%) had active disease. The median RDW was 14.0 (13---15). There was an association between RDW and disease activity (p = 0.044). After adjustment for age and gender, this association remained consistent (OR 1.20, 95% CI 1.03---1.39, p = 0.016). It was also found that the association between RDW and disease activity was independent of hemoglobin and ESR (OR 1.36, 95% CI 1.08---1.72, p = 0.01) and of biologic therapy (OR 1.19, 95% CI 1.03---1.37, p = 0.017). A RDW cutoff of 16% had a specificity and negative predictive value for CDAI ≥ 150 of 88% and 86%, respectively. Conclusion: In this study, RDW proved to be an independent and relatively specific marker of CD activity. These results may contribute to the implementation of this simple parameter, in clinical practice, aiming to help therapeutic decisions.
Resumo:
INTRODUCTION: Insulin resistance is the pathophysiological key to explain metabolic syndrome. Although clearly useful, the Homeostasis Model Assessment index (an insulin resistance measurement) hasn't been systematically applied in clinical practice. One of the main reasons is the discrepancy in cut-off values reported in different populations. We sought to evaluate in a Portuguese population the ideal cut-off for Homeostasis Model Assessment index and assess its relationship with metabolic syndrome. MATERIAL AND METHODS: We selected a cohort of individuals admitted electively in a Cardiology ward with a BMI < 25 Kg/m2 and no abnormalities in glucose metabolism (fasting plasma glucose < 100 mg/dL and no diabetes). The 90th percentile of the Homeostasis Model Assessment index distribution was used to obtain the ideal cut-off for insulin resistance. We also selected a validation cohort of 300 individuals (no exclusion criteria applied). RESULTS: From 7 000 individuals, and after the exclusion criteria, there were left 1 784 individuals. The 90th percentile for Homeostasis Model Assessment index was 2.33. In the validation cohort, applying that cut-off, we have 49.3% of individuals with insulin resistance. However, only 69.9% of the metabolic syndrome patients had insulin resistance according to that cut-off. By ROC curve analysis, the ideal cut-off for metabolic syndrome is 2.41. Homeostasis Model Assessment index correlated with BMI (r = 0.371, p < 0.001) and is an independent predictor of the presence of metabolic syndrome (OR 19.4, 95% CI 6.6 - 57.2, p < 0.001). DISCUSSION: Our study showed that in a Portuguese population of patients admitted electively in a Cardiology ward, 2.33 is the Homeostasis Model Assessment index cut-off for insulin resistance and 2.41 for metabolic syndrome. CONCLUSION: Homeostasis Model Assessment index is directly correlated with BMI and is an independent predictor of metabolic syndrome.
Resumo:
INTRODUCTION:The need for studies that describe the resistance patterns in populations of Aedes aegypti (Linnaeus) in function of their region of origin justified this research, which aimed to characterize the resistance to temephos and to obtain information on esterase activity in populations of Aedes aegypticollected in municipalities of the State of Paraíba.METHODS:Resistance to temephos was evaluated and characterized from the diagnostic dose of 0.352mg i.a./L and multiple concentrations that caused mortalities between 5% and 99%. Electrophoresis of isoenzymes was used to verify the patterns of esterase activity among populations of the vector.RESULTS:All populations of Aedes aegypti were resistant to temephos, presenting a resistance rate (RR) greater than 20. The greatest lethal dose 50% of the sample (CL50) was found for the municipality of Lagoa Seca, approximately forty-one times the value of CL50 for the Rockefeller population. The populations characterized as resistant showed two to six regions of α and β-esterase, called EST-1 to EST-6, while the susceptible population was only seen in one region of activity.CONCLUSIONS:Aedes aegyptiis widely distributed and shows a high degree of resistance to temephos in all municipalities studied. In all cases, esterases are involved in the metabolism and, consequently, in the resistance to temephos.
Resumo:
OBJETIVE: to evaluate the efficacy of urine culture by bag specimen for the detection of neonatal urinary tract infection in full-term newborn infants. Retrospective study (1997) including full-term newborn infants having a positive urine culture (>100,000 CFU/ml) by bag specimen collection. The urinary tract infection diagnosis was confirmed by positive urine culture (suprapubic bladder aspiration method). The select cases were divided into three groups, according to newborn infant age at the bag specimen collection: GI (< 48 h, n = 17), GII (48 h to 7 d, n = 35) and GIII (> 7 d, n = 9). Sixty one full-term newborn infants were studied (5.1 % of total infants). The diagnosis was confirmed on 19/61 (31.1 %) of full-term infants born alive. Distribution among the groups was: GI = 2/17 (11.8 %), GII = 10//35 (28.6 %), and GIII = 7/9 (77.7 %). The most relevant clinical symptoms were: fever (GI - 100 %, GII - 91.4 %) and weight loss (GI - 35.3 %, GII - 45.7 %). Urine culture results for specimens collected by suprapubic aspiration were: E. coli GI (100 %), GII (40 %) and GIII (28.6 %), E. faecalis GI (30%), Staphylococcus coagulase-negative GII (20 %) and GIII (42.8 %), and Staphylococcus aureus GII (10 %). Correlation between positive urine culture collection (bag specimen method) and urinary tract infection diagnosis, using relative risk analysis, produced the following results: GI=0.30 (CI95% 0.08-1.15), GII=0.51 (CI 95% 0.25-1.06) and GIII=3.31 (CI95% 1.8-6.06) The most frequent urinary tract infection clinical signs in the first week were fever and weight loss, while non-specific symptomatology occurred later. E. coli was most frequent infectious agent, although from the 7th day of life, staphylococcus was noted. The urine culture (bag specimen method) was effective in detecting urinary tract infection only after the 7th day of life.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
BACKGROUND: By contrast with other southern European people, north Portuguese population registers an especially high prevalence of hypertension and stroke incidence. We designed a cohort study to identify individuals presenting accelerated and premature arterial aging in the Portuguese population. METHOD: Pulse wave velocity (PWV) was measured in randomly sampled population dwellers aged 18-96 years from northern Portugal, and used as a marker of early vascular aging (EVA). Of the 3038 individuals enrolled, 2542 completed the evaluation. RESULTS: Mean PWV value for the entire population was 8.4?m/s (men: 8.6?m/s; women: 8.2?m/s; P?0.02). The individuals were classified with EVA if their PWV was at least 97.5th percentile of z-score for mean PWV values adjusted for age (using normal European reference values as comparators). The overall prevalence of EVA was 12.5%; 26.1% of individuals below 30 years presented this feature and 40.2% of individuals in that same age strata were placed above the 90th percentile of PWV; and 18.7% of the population exhibited PWV values above 10?m/s, with male predominance (17.2% of men aged 40-49 years had PWV?>?10?m/s). Logistic regression models indicated gender differences concerning the risk of developing large artery damage, with women having the same odds of PWV above 10?m/s 10 years later than men. CONCLUSION: The population PWV values were higher than expected in a low cardiovascular risk area (Portugal). High prevalence rates of EVA and noteworthy large artery damage in young ages were found.
Resumo:
Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.
Resumo:
Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.
Resumo:
The economic value of flounder from shore angling around Ireland was assessed. Flounder catches from shore angling tournaments around Ireland were related to domestic and overseas shore angling expenditure in order to determine an economic value for the species. Temporal trends in flounder angling catches, and specimen (trophy) flounder reports were also investigated. Flounder was found to be the most caught shore angling species in competitions around Ireland constituting roughly one third of the shore angling competition catch although this did vary by area. The total value of flounder from shore angling tourism was estimated to be of the order of €8.4 million. No significant temporal trends in flounder angling catches and specimen reports were found. Thus there is no evidence from the current study for any decline in flounder stocks. The population dynamics of 0-group flounder during the early benthic stage was investigated at estuarine sites in Galway Bay, west of Ireland. Information was analysed from the March to June sampling period over five years (2002 to 2006). Spatial and temporal variations in settlement and population length structure were analysed between beach and river habitats and sites. Settlement of flounder began from late March to early May of each year, most commonly in April. Peak settlement was usually in April or early May. Settlement was recorded earlier than elsewhere, although most commonly was similar to the southern part of the UK and northern France. Settlement was generally later in tidal rivers than on sandy beaches. Abundance of 0-group flounder in Galway Bay did not exhibit significant inter -annual variability. 0-group flounder were observed in dense aggregations of up to 105 m'2, which were patchy in distribution. Highest densities of 0-group flounder were recorded in limnetic and oligohaline areas as compared with the lower densities in polyhaline and to a lesser extent mesohaline areas. Measurements to of salinity allowed the classification of beaches, and tidal river sections near the mouth, into a salinity based scheme for length comparisons. Beaches were classified as polyhaline,the lower section of rivers as mesohaline, and the middle and upper sections as oligohaline. Over the March to June sampling period 0-group flounder utilised different sections at different length ranges and were significantly larger in more upstream sections. During initial settlement in April, 0-group flounder of 8-10 mm (standard length, SL) were present in abundance on polyhaline sandy beaches. By about 10mm (SL), flounder were present in all polyhaline, mesohaline and (oligohaline) sections. 0-group flounder became absent or in insignificant numbers in polyhaline and mesohaline sections in a matter of weeks after first appearance. From April to June, 0-group flounder of 12-30mm (SL) were found in more upstream locations in the oligohaline sections. About one month (May or June) after initial settlement, 0-group flounder became absent from the oligohaline sections. Concurrently, flounder start to reappear in mesohaline and polyhaline areas at approximately 30mm (SL) in June. The results indicate 0-group flounder in the early benthic stage are associated with low salinity areas, but as they grow, this association diminishes. Results strongly suggest that migration of 0-group flounder between habitats takes place during the early benthic phase.
Resumo:
Background: The TIMI Score for ST-segment elevation myocardial infarction (STEMI) was created and validated specifically for this clinical scenario, while the GRACE score is generic to any type of acute coronary syndrome. Objective: Between TIMI and GRACE scores, identify the one of better prognostic performance in patients with STEMI. Methods: We included 152 individuals consecutively admitted for STEMI. The TIMI and GRACE scores were tested for their discriminatory ability (C-statistics) and calibration (Hosmer-Lemeshow) in relation to hospital death. Results: The TIMI score showed equal distribution of patients in the ranges of low, intermediate and high risk (39 %, 27 % and 34 %, respectively), as opposed to the GRACE Score that showed predominant distribution at low risk (80 %, 13 % and 7%, respectively). Case-fatality was 11%. The C-statistics of the TIMI score was 0.87 (95%CI = 0.76 to 0.98), similar to GRACE (0.87, 95%CI = 0.75 to 0.99) - p = 0.71. The TIMI score showed satisfactory calibration represented by χ2 = 1.4 (p = 0.92), well above the calibration of the GRACE score, which showed χ2 = 14 (p = 0.08). This calibration is reflected in the expected incidence ranges for low, intermediate and high risk, according to the TIMI score (0 %, 4.9 % and 25 %, respectively), differently to GRACE (2.4%, 25% and 73%), which featured middle range incidence inappropriately. Conclusion: Although the scores show similar discriminatory capacity for hospital death, the TIMI score had better calibration than GRACE. These findings need to be validated populations of different risk profiles.
Resumo:
SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.
Resumo:
Oolitic carbonates belonging to the Hauptrogenstein Formation of Bajocian (Middle Jurassic) age have been shown to be anomalously enriched in cadmium (Cd) throughout the Jura Mountains. Soils associated with this type of rock substratum may be naturally polluted with regards to Cd. At Schleifenberg (Canton Basel Land, Switzerland) the Hauptrogenstein Formation is almost entirely exposed along a trail on its SW flank. Cadmium concentrations were systematically measured throughout this formation and Cd enrichments in rocks are shown to occur to a maximum content of 4.9 mg kg(-1). We investigated associated soils, which cover the entire outcrop, and show that they have been formed through the weathering of the underlying bedrock and through the uptake of colluvial limestone fragments from the same and older formations. Cadmium contents in the soils reach a maximum value of 2.0 mg kg(-1), thereby exceeding the official Swiss indicative guideline value for soils fixed at 0.8 mg.kg(-1). Mineralogical analyses on the soils and associated bedrock suggest that no allochthonous component related to aeolian transport is present. Sequential extractions applied to selected soil samples show that about half of the Cd resides in the carbonate fraction coming from the fractured parent-rock, while the Cd released from the weathered carbonates is associated either with organic matter (over 10%) or with Fe and Mn-oxihydroxides (approximately 30%). No exchangeable Cd phase was found and this, together with the buffer capacity of this calcareous soil, suggests that the amount of mobile Cd is quite negligible in this soil, which also greatly reduces the amount of bioavailable
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
INTRODUCTION: Red cell distribution width was recently identified as a predictor of cardiovascular and all-cause mortality in patients with previous stroke. Red cell distribution width is also higher in patients with stroke compared with those without. However, there are no data on the association of red cell distribution width, assessed during the acute phase of ischemic stroke, with stroke severity and functional outcome. In the present study, we sought to investigate this relationship and ascertain the main determinants of red cell distribution width in this population. METHODS: We used data from the Acute Stroke Registry and Analysis of Lausanne for patients between January 2003 and December 2008. Red cell distribution width was generated at admission by the Sysmex XE-2100 automated cell counter from ethylene diamine tetraacetic acid blood samples stored at room temperature until measurement. An χ(2) -test was performed to compare frequencies of categorical variables between different red cell distribution width quartiles, and one-way analysis of variance for continuous variables. The effect of red cell distribution width on severity and functional outcome was investigated in univariate and multivariate robust regression analysis. Level of significance was set at 95%. RESULTS: There were 1504 patients (72±15·76 years, 43·9% females) included in the analysis. Red cell distribution width was significantly associated to NIHSS (β-value=0·24, P=0·01) and functional outcome (odds ratio=10·73 for poor outcome, P<0·001) at univariate analysis but not multivariate. Prehospital Rankin score (β=0·19, P<0·001), serum creatinine (β=0·008, P<0·001), hemoglobin (β=-0·009, P<0·001), mean platelet volume (β=0·09, P<0·05), age (β=0·02, P<0·001), low ejection fraction (β=0·66, P<0·001) and antihypertensive treatment (β=0·32, P<0·001) were independent determinants of red cell distribution width. CONCLUSIONS: Red cell distribution width, assessed during the early phase of acute ischemic stroke, does not predict severity or functional outcome.