927 resultados para vagal stimulation
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.
Resumo:
Malnourished rats since birth (mothers fed on 6% of protein) or controlled ones (16% of protein), half of each group received environmental stimulation (ES) from the age of 0-35th day, were studied. The performance in the elevated plus maze (EPM) was assessed on the last day. ES increased time spent and also the entries into open arms of EPM, but malnourished non-stimulated rats visited more segments near the central area than the distant ones. Data suggests an anxiolytic effect of ES which is less evident in malnourished rats. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Schizophrenia is a complex and heterogeneous psychiatric disorder. Auditory verbal hallucinations occur in 50-70% of patients with schizophrenia and are associated with significant distress, decreased quality of life and impaired social functioning. This study aimed to investigate the effects of active compared with sham 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal-parietal cortex in patients with schizophrenia treated with clozapine. Symptom dimensions that were evaluated included general psychopathology, severity of auditory hallucinations, quality of life and functionality. Seventeen right-handed patients with refractory schizophrenia experiencing auditory verbal hallucinations and treated with clozapine were randomly allocated to receive either active rTMS or sham stimulation. A total of 384 min of rTMS was administered over 20 days using a double-masked, sham-controlled, parallel design. There was a significant reduction in Brief Psychiatric Rating Scale (BPRS) scores in the active group compared with the sham group. There was no significant difference between active and sham rTMS on Quality of Life Scale (QLS), Auditory Hallucinations Rating Scale (AHRS), Clinical Global Impressions (CGI) and functional assessment staging ( FAST) scores. Compared with sham stimulation, active rTMS of the left temporoparietal cortex in clozapine-treated patients showed a positive effect on general psychopathology. However, there was no effect on refractory auditory hallucinations. Further studies with larger sample sizes are needed to confirm these findings. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Gastric Palsy Following AF Vagal Ablation. We report a case of a 55-year-old man with vagal paroxysmal atrial fibrillation (AF) who was submitted to selective epicardial and endocardial atrial vagal denervation with the objective of treating AF. Radiofrequency pulses were applied on epicardial and endocardial surface of the left atrium close to right pulmonary veins (PVs) and also on epicardial surface close to left inferior PV. Following the procedure, patient presented with symptoms of gastroparesis, which was documented on CT scan and gastric emptying scintigraphy. Symptoms were transient and the patient recovered completely.
Resumo:
Single session repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) is effective in the treatment of chronic pain patients but the analgesic effect of repeated sessions is still unknown We evaluated the effects of rTMS in patients with refractory pain due to complex regional pain syndrome (CRPS) type I Twenty three patients presenting CRPS type I of 1 upper limb were treated with the best medical treatment (analgesics and adjuvant medications physical therapy) plus 10 daily sessions of either real (r) or sham (s) 10Hz rTMS to the motor cortex (M1) Patients were assessed daily and after 1 week and 3 months after the last session using the Visual Analogical Scale (VAS) the McGill Pain Questionnaire (MPQ) the Health Survey 36 (SF 36) and the Hamilton Depression (HDRS) During treatment there was a significant reduction in the VAS scores favoring the r rTMS group mean reduction of 4 65 cm (50 9%) against 2 18 cm (24 7%) in the s rTMS group The highest reduction occurred at the tenth session and correlated to improvement in the affective and emotional subscores of the MPQ and SF 36 Real rTMS to the M1 produced analgesic effects and positive changes in affective aspects of pain in CRPS patients during the period of stimulation Perspective This study shows an efficacy of repetitive sessions of high frequency rTMS as an add on therapy to refractory CAPS type I patients It had a positive effect in different aspects of pain (sensory discriminative and emotional affective) It opens the perspective for the clinical use of this technique (C) 2010 by the American Pain Society
Resumo:
Background and purpose: Tinnitus is a frequent disorder which is very difficult to treat and there is compelling evidence that tinnitus is associated with functional alterations in the central nervous system. Targeted modulation of tinnitus-related cortical activity has been proposed as a promising new treatment approach. We aimed to investigate both immediate and long-term effects of low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) in patients with tinnitus and normal hearing. Methods: Using a parallel design, 20 patients were randomized to receive either active or placebo stimulation over the left temporoparietal cortex for five consecutive days. Treatment results were assessed by using the Tinnitus Handicap Inventory. Ethyl cysteinate dimmer-single photon emission computed tomography (SPECT) imaging was performed before and 14 days after rTMS. Results: After active rTMS there was significant improvement of the tinnitus score as compared to sham rTMS for up to 6 months after stimulation. SPECT measurements demonstrated a reduction of metabolic activity in the inferior left temporal lobe after active rTMS. Conclusion: These results support the potential of rTMS as a new therapeutic tool for the treatment of chronic tinnitus, by demonstrating a significant reduction of tinnitus complaints over a period of at least 6 months and significant reduction of neural activity in the inferior temporal cortex, despite the stimulation applied on the superior temporal cortex.
Resumo:
Egr-1 and related proteins are inducible transcription factors within the brain recognizing the same consensus DNA sequence. Three Egr DNA-binding activities were observed in regions of the naive rat brain. Egr-1 was present in all brain regions examined. Bands composed, at least in part, of Egr-2 and Egr-3 were present in different relative amounts in the cerebral cortex, striatum, hippocampus, thalamus, and midbrain. All had similar affinity and specificity for the Egr consensus DNA recognition sequence. Administration of the convulsants NMDA, kainate, and pentylenetetrazole differentially induced Egr-1 and Egr-2/3 DNA-binding activities in the cerebral cortex, hippocampus, and cerebellum. All convulsants induced Egr-1 and Egr-2 immunoreactivity in the cerebral cortex and hippocampus. These data indicate that the members of the Egr family are regulated at different levels and may interact at promoters containing the Egr consensus sequence to fine tune a program of gene expression resulting from excitatory stimuli.
Resumo:
Background. Previous works showed potentially beneficial effects of a single session of peripheral nerve sensory stimulation (PSS) on motor function of a paretic hand in patients with subacute and chronic stroke. Objective. To investigate the influence of the use of different stimulus intensities over multiple sessions (repetitive PSS [RPSS]) paired with motor training. Methods. To address this question, 22 patients were randomized within the second month after a single hemispheric stroke in a parallel design to application of 2-hour RPSS at 1 of 2 stimulus intensities immediately preceding motor training, 3 times a week, for 1 month. Jebsen-Taylor test (JTT, primary endpoint measure), pinch force, Functional Independence Measure (FIM), and corticomotor excitability to transcranial magnetic stimulation were measured before and after the end of the treatment month. JTT, FIM scores, and pinch force were reevaluated 2 to 3 months after the end of the treatment. Results. Baseline motor function tests were comparable across the 2 RPSS intensity groups. JTT improved significantly in the lower intensity RPSS group but not in the higher intensity RPSS group at month 1. This difference between the 2 groups reduced by months 2 to 3. Conclusions. These results indicate that multiple sessions of RPSS could facilitate training effects on motor function after subacute stroke depending on the intensity of stimulation. It is proposed that careful dose-response studies are needed to optimize parameters of RPSS stimulation before designing costly, larger, double-blind, multicenter clinical trials.
Resumo:
We assessed for the first time the long-term maintenance of repetitive transcranial magnetic stimulation (rTMS)-induced analgesia in patients with chronic widespread pain due to fibromyalgia. Forty consecutive patients were randomly assigned, in a double-blind fashion, to 2 groups: one receiving active rTMS (n = 20) and the other, sham stimulation (n = 20), applied to the left primary motor cortex. The stimulation protocol consisted of 14 sessions: an ""induction phase"" of 5 daily sessions followed by a ""maintenance phase"" of 3 sessions a week apart, 3 sessions a fortnight apart, and 3 sessions a month apart. The primary outcome was average pain intensity over the last 24 hours, measured before each stimulation from day 1 to week 21 and at week 25 (1 month after the last stimulation). Other outcomes measured included quality of life, mood and anxiety, and several parameters of motor cortical excitability. Thirty patients completed the study (14 in the sham stimulation group and 16 in the active stimulation group). Active rTMS significantly reduced pain intensity from day 5 to week 25. These analgesic effects were associated with a long-term improvement in items related to quality of life (including fatigue, morning tiredness, general activity, walking, and sleep) and were directly correlated with changes in intracortical inhibition. In conclusion, these results suggest that TMS may be a valuable and safe new therapeutic option in patients with fibromyalgia. (C) 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel