715 resultados para updates
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.
Resumo:
This article updates a previous article on the Lockwood v Doric fair basing case in the Full Court of the Federal Court which was recently appealed to the High Court. The High Court's decision provides a new and welcome level of clarity in this difficult area of patent law. With this new clarity we can finally lock away some of the mysteries that have plagued the area for some time. Already, indications are that Lockwood's guidelines are being usefully applied in the Patent Office and Federal Court.
Resumo:
The travel and hospitality industry is one which relies especially crucially on word of mouth, both at the level of overall destinations (Australia, Queensland, Brisbane) and at the level of travellers’ individual choices of hotels, restaurants, sights during their trips. The provision of such word-of-mouth information has been revolutionised over the past decade by the rise of community-based Websites which allow their users to share information about their past and future trips and advise one another on what to do or what to avoid during their travels. Indeed, the impact of such user-generated reviews, ratings, and recommendations sites has been such that established commercial travel advisory publishers such as Lonely Planet have experienced a pronounced downturn in sales ¬– unless they have managed to develop their own ways of incorporating user feedback and contributions into their publications. This report examines the overall significance of ratings and recommendation sites to the travel industry, and explores the community, structural, and business models of a selection of relevant ratings and recommendations sites. We identify a range of approaches which are appropriate to the respective target markets and business aims of these organisations, and conclude that there remain significant opportunities for further operators especially if they aim to cater for communities which are not yet appropriately served by specific existing sites. Additionally, we also point to the increasing importance of connecting stand-alone ratings and recommendations sites with general social media spaces like Facebook, Twitter, and LinkedIn, and of providing mobile interfaces which enable users to provide updates and ratings directly from the locations they happen to be visiting. In this report, we profile the following sites: * TripAdvisor, the international market leader for travel ratings and recommendations sites, with a membership of some 11 million users; * IgoUgo, the other leading site in this field, which aims to distinguish itself from the market leader by emphasising the quality of its content; * Zagat, a long-established publisher of restaurant guides which has translated its crowdsourcing model from the offline to the online world; * Lonely Planet’s Thorn Tree site, which attempts to respond to the rise of these travel communities by similarly harnessing user-generated content; * Stayz, which attempts to enhance its accommodation search and booking services by incorporating ratings and reviews functionality; and * BigVillage, an Australian-based site attempting to cater for a particularly discerning niche of travellers; * Dopplr, which connects travel and social networking in a bid to pursue the lucrative market of frequent and business travellers; * Foursquare, which builds on its mobile application to generate a steady stream of ‘check-ins’ and recommendations for hospitality and other services around the world; * Suite 101, which uses a revenue-sharing model to encourage freelance writers to contribute travel writing (amongst other genres of writing); * Yelp, the global leader in general user-generated product review and recommendation services. In combination, these profiles provide an overview of current developments in the travel ratings and recommendations space (and beyond), and offer an outlook for further possibilities. While no doubt affected by the global financial downturn and the reduction in travel that it has caused, travel ratings and recommendations remain important – perhaps even more so if a reduction in disposable income has resulted in consumers becoming more critical and discerning. The aggregated word of mouth from many tens of thousands of travellers which these sites provide certainly has a substantial influence on their users. Using these sites to research travel options has now become an activity which has spread well beyond the digirati. The same is true also for many other consumer industries, especially where there is a significant variety of different products available – and so, this report may also be read as a case study whose findings are able to be translated, mutatis mutandis, to purchasing decisions from household goods through consumer electronics to automobiles.
Resumo:
This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.
Resumo:
This paper describes a novel probabilistic approach to incorporating odometric information into appearance-based SLAM systems, without performing metric map construction or calculating relative feature geometry. The proposed system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), represents location as a probability distribution along a trajectory, and represents appearance continuously over the trajectory rather than at discrete locations. The distribution is evaluated using a Rao-Blackwellised particle filter, which weights particles based on local appearance and odometric similarity and explicitly models both the likelihood of revisiting previous locations and visiting new locations. A modified resampling scheme counters particle deprivation and allows loop closure updates to be performed in constant time regardless of map size. We compare the performance of CAT-SLAM to FAB-MAP (an appearance-only SLAM algorithm) in an outdoor environment, demonstrating a threefold increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
Background: The Current Population Survey (CPS) and the American Time Use Survey (ATUS) use the 2002 census occupation system to classify workers into 509 separate occupations arranged into 22 major occupational categories. Methods: We describe the methods and rationale for assigning detailed MET estimates to occupations and present population estimates (comparing outputs generated by analysis of previously published summary MET estimates to the detailed MET estimates) of intensities of occupational activity using the 2003 ATUS data comprised of 20,720 respondents, 5,323 (2,917 males and 2,406 females) of whom reported working 6+ hours at their primary occupation on their assigned reporting day. Results: Analysis using the summary MET estimates resulted in 4% more workers in sedentary occupations, 6% more in light, 7% less in moderate, and 3% less in vigorous compared to using the detailed MET estimates. The detailed estimates are more sensitive to identifying individuals who do any occupational activity that is moderate or vigorous in intensity resulting in fewer workers in sedentary and light intensity occupations. Conclusions: Since CPS/ATUS regularly captures occupation data it will be possible to track prevalence of the different intensity levels of occupations. Updates will be required with inevitable adjustments to future occupational classification systems.
Resumo:
This current report, It’s About Time: Investing in Transportation to Keep Texas Economically Competitive, updates the February 2009 report by providing an enhanced analysis of the current state of the Texas transportation system, determining the household costs of under-investing in the system and identifying potential revenue options for funding the system. However, the general conclusion has not changed. There are tremendous needs and high costs associated with “doing nothing new.”
Resumo:
Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.
Resumo:
Relevance Feedback (RF) has been proven very effective for improving retrieval accuracy. Adaptive information filtering (AIF) technology has benefited from the improvements achieved in all the tasks involved over the last decades. A difficult problem in AIF has been how to update the system with new feedback efficiently and effectively. In current feedback methods, the updating processes focus on updating system parameters. In this paper, we developed a new approach, the Adaptive Relevance Features Discovery (ARFD). It automatically updates the system's knowledge based on a sliding window over positive and negative feedback to solve a nonmonotonic problem efficiently. Some of the new training documents will be selected using the knowledge that the system currently obtained. Then, specific features will be extracted from selected training documents. Different methods have been used to merge and revise the weights of features in a vector space. The new model is designed for Relevance Features Discovery (RFD), a pattern mining based approach, which uses negative relevance feedback to improve the quality of extracted features from positive feedback. Learning algorithms are also proposed to implement this approach on Reuters Corpus Volume 1 and TREC topics. Experiments show that the proposed approach can work efficiently and achieves the encouragement performance.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.
Resumo:
We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-family (Gibbs distribution) representation of structured objects. The algorithm is efficient—even in cases where the number of labels y is exponential in size—provided that certain expectations under Gibbs distributions can be calculated efficiently. The method for structured labels relies on a more general result, specifically the application of exponentiated gradient updates [7, 8] to quadratic programs.
Resumo:
As the use of Twitter has become more commonplace throughout many nations, its role in political discussion has also increased. This has been evident in contexts ranging from general political discussion through local, state, and national elections (such as in the 2010 Australian elections) to protests and other activist mobilisation (for example in the current uprisings in Tunisia, Egypt, and Yemen, as well as in the controversy around Wikileaks). Research into the use of Twitter in such political contexts has also developed rapidly, aided by substantial advancements in quantitative and qualitative methodologies for capturing, processing, analysing, and visualising Twitter updates by large groups of users. Recent work has especially highlighted the role of the Twitter hashtag – a short keyword, prefixed with the hash symbol ‘#’ – as a means of coordinating a distributed discussion between more or less large groups of users, who do not need to be connected through existing ‘follower’ networks. Twitter hashtags – such as ‘#ausvotes’ for the 2010 Australian elections, ‘#londonriots’ for the coordination of information and political debates around the recent unrest in London, or ‘#wikileaks’ for the controversy around Wikileaks thus aid the formation of ad hoc publics around specific themes and topics. They emerge from within the Twitter community – sometimes as a result of pre-planning or quickly reached consensus, sometimes through protracted debate about what the appropriate hashtag for an event or topic should be (which may also lead to the formation of competing publics using different hashtags). Drawing on innovative methodologies for the study of Twitter content, this paper examines the use of hashtags in political debate in the context of a number of major case studies.