984 resultados para unsaturated soil suction drain evaporation
Resumo:
Debris Landslide is one of the types of landslides with the widest distribution, largest quantity, and the closest relationship with engineering construction. It is also one of the most important types of landslides that can cause disaster. This kind of landslide often occurs in the loose slopes which are made up of loose congeries formed by earth filling, residual soil, slope wash, dilapidation, landslide or full weathered material of hard rock. Rainfall is always the chief inducing factor of debris Landslide. Therefore, to research stability of debris Landslide during rainfall not only has important theoretical significance for understanding developing law and deformation and failure mechanism of debris landslide, but also has important practical significance for investigating, appraising, forecasting, preventing and controlling debris landslides. This thesis systematically summarized the relationships between rainfall and landslide, the method to survey water table in the landslides, the deformation and failure mechanism of debris landslide, and the progress in the stability analysis of landslides based on the analyses of data collected widely at home and abroad. The problems in the study of the stability of debris landslide during rainfall was reviewed and discussed. Due to the complicated geological conditions and the random rainfall conditions, the research on the landslides' stability must be based on engineering geological qualitative analysis. Through the collection of the data about the Panxi region and the Three Gorges Reservoir region, the author systematically summarized the engineering geological conditions, hydro-geological condition, distribution characteristics of stress field in the slope, physical and mechanical properties and hydro-mechanical properties of debris. In the viewpoint of dynamics of soil water and hydromechanics, physical process of rainfall to supply groundwater of debris landslides can be divided into two phases, i.e. non-saturated steady infiltrating phase and saturated unsteady supplying phase. The former can be described by mathematical model of surface water infiltration while the latter can be described by equivalent continuous medium model of groundwater seepage. With regard to specific hydrological geology system, we can obtain the dynamic variation law of water content, water table, landslide stability of rock and soil mass, along with quantity and duration of rainfall after the boundary condition on hydrological geology has been ascertained. This is a new way to study the response law of groundwater in the landslides during rainfall. After wet face of rock and soil mass connects with ground water table, the raising of water table will occur due to the supply of rainfall. Then interaction between ground water and rock and soil mass will occur, such as the action of physics, water, chemistry and mechanics, which caused the decrease of shearing strength of sliding zone. According to the action of groundwater on rock and soil mass, a concise mechanical model of debris landslide’s deformation was established during rainfall. The static equilibrium condition of landslide mass system was achieved according to the concise mechanical model, and then the typical deformation and failure process and failure mode of debris landslide during rainfall were discussed. In this thesis, the former limiting equilibrium slice method was modified and improved based on shearing strength theory of , a stability analysis program of debris landslide was established and developed taking account of the saturated-unsaturated seepage, by introducing the shearing strength theory of unsaturated soil mass made by (1978). The program has reasonable data storage and simple interface and is easy to operate, and can be perfectly used to carry out sensitivity analysis of influencing factors of landslides' stability, integrated with the program of Office Excel. The design of drainage engineering are always bases on empirical methods and is short of effective quantitative analysis and appraise, therefore, the conception of critical water table of debris landslide was put forward. For debris landslides with different kinds of slide face in the engineering practice, a program to search the critical water table of debris landslide was developed based on native groundwater table. And groundwater table in the slope should be declined below the critical water table in the drainage works, so the program can be directly used to guide drainage works in the debris landslide. Taking the slope deformation body in the back of former factory building of Muli Shawan hydroelectric power station as an example, a systematic and detailed research on debris landslides' stability during rainfall was researched systematically, the relationship among quantity of rainfall, water table and stability of slope was established, the debris landslides' stability in process of rainfall from dynamic viewpoint was analyzed and researched.
Resumo:
Expansive soil is a kind of typical unsaturated soil with characteristics of high swelling-shrinking deformation, cracks and over consolidation. It is very harmful to civil engineering, As a new processing method deal with expansive soil, Chemistry treatment has widespread applied in developed countries such as Europe and America, and also gained remarkable result. Based on the embankment filling soil improving testing projects in Meng-Xin freeway, this paper proposed a new processing method to expansive soil embankment wrapped with PAS-treated soil, experimental study of expansive soil chemical improved by PAS is been carried out. The water content change is the external factor which causes expansive soil to have swelling-shrinkage deformation. this reflected that the soil body swelling-shrinkage characteristic mainly depends on its mineral ingredient and the soil-water mutual function. This paper takes expansive soil as one kind of ordinary high plastic clay from angle of clay-water mutual function explained the expansive soil swelling-shrinkage deformation mechanism on microscopic. And take this swelling-shrinkage mechanism as the master line, Cooperates with the China Academy of Chemistry, we developed the new method PAS treatment, trough ionic exchange, joint, package and flocculation, the stronger static electricity function weakened the level through adsorption and the stronger static electricity function, PAS can weakened the negative charge repulsion between levels, causes the electric potential to reduce, diffusion layer thickness to be thinner, and improves the water affinity performance of expansive soil effectively. Moreover the space network architecture compromised with PAS and soil enhanced the joint strength between the clay particles , enable the soil body to have comparatively high strength and the distortion rate. pointed proposed the PAS modified principle. Combine with the construction of experimented road, this paper sums up and presents the construction craft and technology requirement of PAS treatment to expansive soil embankment. Through many experimental studied the basic physical property, the intensity characteristic and water stability changes of expansive soil and PAS-treated soil. The results of study indicate that adding lime into the expansive soil can reduce the content of clay gain obviously, reduce the plasticity notably, increase the strength greatly, control the property of swelling and shrinking effectively, and can meliorate the stability of sucking water clearly. Simultaneity PAS don’t change the cultivate capacity of the soil, the modified slope of the embankment can adopt plant fixed slope method as ecology protection. Finally the processing effect of use different treatment has analyzed through numerical simulation, summarized the PAS chemical wrapping treatment process in the actual project application, and appraised its processing effect and the project efficiency. The research indicated that PAS chemical treatment is one effective method to improve expansive soil. Compare with long-distance replacement, especially in the high plastic expansive soil massive distribution area, PAS treatment has the very greatly economical superiority to be promoted. The study in the paper not only afforded technique method to Meng-Xin expressway construction but also important for improvement of the expressway construction theory in swelling soil areas. Key words: PAS; expansive soil; swelling-shrinkage deformation mechanism; wrapping embankment; chemical modified treatment.
Resumo:
Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Geofísica), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Observed deviations from traditional concepts of soil-water movement are considered in terms of fractals. A connection is made between this movement and a Brownian motion, a random and self-affine type of fractal, to account for the soil-water diffusivity function having auxiliary time dependence for unsaturated soils. The position of a given water content is directly proportional to t(n), where t is time, and exponent n for distinctly unsaturated soil is less than the traditional 0.50. As water saturation is approached, n approaches 0.50. Macroscopic fractional Brownian motion is associated with n < 0.50, but shifts to regular Brownian motion for n = 0.50.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVES To identify potential prognostic factors affecting outcome in septic peritonitis caused by gastrointestinal perforation in dogs and cats. METHODS A retrospective study. Animals operated on for septic peritonitis because of gastrointestinal perforation were evaluated. Risk factors assessed included age, duration of clinical signs, recent prior abdominal surgery, recent prior anti-inflammatory drug administration, placement of a closed-suction drain and location of perforation. RESULTS Fifty-five animals (44 dogs and 11 cats) were included. The overall mortality was 63·6%. No association was found between age, duration of clinical signs or prior abdominal surgery and outcome. Animals with a history of prior anti-inflammatory drugs were significantly (P=0·0011) more likely to have perforation of the pylorus (73·3%). No significant difference in outcome was found between animals treated with closed-suction drains and those treated with primary closure or between pyloric perforation and perforation at other gastrointestinal sites. CLINICAL SIGNIFICANCE Administration of anti-inflammatory drugs in dogs and cats is a significant risk factor for pyloric perforation. Pyloric perforation was not associated with a poorer outcome than perforation at other gastrointestinal sites. Placement of a closed suction drain did not improve outcome compared to primary closure.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
A high-resolution 222Radon (222Rn) flux map for Europe was developed, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° x 0.083°. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq/m**2/s (ERA-Interim/Land soil moisture) or 15 mBq/m**2/s (GLDAS-Noah soil moisture) for the period 2006-2010. The 222Rn flux maps for Europe are available for the application in atmospheric transport studies, e.g to evaluate the performance of atmospheric transport models.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2015.
Resumo:
A modified conventional direct shear device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying and wetting paths of soil water characteristic curves (SWCCs). The results revealed that the internal friction angle of the soils was not significantly affected by either the suction or the drying wetting SWCCs. The apparent cohesion of soil increased with a decreasing rate as suction increased. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as suction increased. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behavior than that of soil in drying at the same net normal stress and suction.
Resumo:
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.
Resumo:
Crack is a significant influential factor in soil slope that could leads to rainfall-induced slope instability. Existence of cracks at soil surface will decrease the shear strength and increase the hydraulic conductivity of soil slope. Although previous research has shown the effect of surface-cracks in soil stability, the influence of deep-cracks on soil stability is still unknown. The limited availability of deep crack data due to the difficulty of effective investigate methods could be one of the obstacles. Current technology in electrical resistivity can be used to detect deep-cracks in soil. This paper discusses deep cracks in unsaturated residual soil slopes in Indonesia using electrical resistivity method. The field investigation such as bore hole and SPT tests was carried out at multiple locations in the area where the electrical resistivity testing have been conducted. Subsequently, the results from bore-hole and SPT test were used to verify the results of the electrical resistivity test. This study demonstrates the benefits and limitations of the electrical resistivity in detecting deep-cracks in a residual soil slopes.
Resumo:
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.