899 resultados para uncertanin nonholonomic dynamic system
Resumo:
This article presents an alternative approach to the decision-making process in transport strategy design. The study explores the possibility of integrating forecasting, assessment and optimization procedures in support of a decision-making process designed to reach the best achievable scenario through mobility policies. Long-term evaluation, as required by a dynamic system such as a city, is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The social welfare achieved by implementing mobility LUTI model policies is measured through a cost-benefit analysis and maximized through an optimization process throughout the evaluation period. The method is tested by optimizing a pricing policy scheme in Madrid on a cordon toll in a context requiring system efficiency, social equity and environmental quality. The optimized scheme yields an appreciable increase in social surplus through a relatively low rate compared to other similar pricing toll schemes. The results highlight the different considerations regarding mobility impacts on the case study area, as well as the major contributors to social welfare surplus. This leads the authors to reconsider the cost-analysis approach, as defined in the study, as the best option for formulating sustainability measures.
Resumo:
Coelomocytes, the heterogeneous population of sea urchin putative immune cells, were found to express a complex set of transcripts featuring scavenger receptor cysteine-rich (SRCR) repeats. SRCR domains define a metazoan superfamily of proteins, many of which are implicated in development and regulation of the immune system of vertebrates. Coelomocytes transcribe multiple SRCR genes from among a multigene family encoding an estimated number of 1,200 SRCR domains in specific patterns particular to each individual. Transcription levels for given SRCR genes may range from pronounced to undetectable, yet all tested animals harbor the genomic loci encoding these genes. Analysis of several SRCR genes revealed multiple loci corresponding to each type. In the case of one SRCR type, a cluster of at least three genes was detected within a 133-kb bacterial artificial chromosome insert, and conserved as well as unique regions were identified in sequences of three genomic clones derived from a single animal. Array hybridizations with repeated samples of coelomocyte messages revealed substantial alterations in levels of expression of many SRCR genes, with fluctuations of up to 10-fold in 1 week and up to 30-fold over a period of 3 months. This report is the first demonstration of genomic and transcriptional complexity in molecules expressed by invertebrate coelomocytes. The mechanisms controlling SRCR gene expression and the functional significance of this dynamic system await elucidation.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
Use of modern object-oriented methods of designing of information systems (IS) both descriptions of interrelations IS and automated with its help business-processes of the enterprises leads to necessity of construction uniform complete IS on the basis of set of local models of such system. As a result of use of such approach there are the contradictions caused by inconsistency of actions of separate developers IS with each other and that is much more important, inconsistency of the points of view of separate users IS. Besides similar contradictions arise while in service IS at the enterprise because of constant change separate business- processes of the enterprise. It is necessary to note also, that now overwhelming majority IS is developed and maintained as set of separate functional modules. Each of such modules can function as independent IS. However the problem of integration of separate functional modules in uniform system can lead to a lot of problems. Among these problems it is possible to specify, for example, presence in modules of functions which are not used by the enterprise to destination, to complexity of information and program integration of modules of various manufacturers, etc. In most cases these contradictions and the reasons, their caused, are consequence of primary representation IS as equilibrium steady system. In work [1] representation IS as dynamic multistable system which is capable to carry out following actions has been considered:
Resumo:
How do infants learn word meanings? Research has established the impact of both parent and child behaviors on vocabulary development, however the processes and mechanisms underlying these relationships are still not fully understood. Much existing literature focuses on direct paths to word learning, demonstrating that parent speech and child gesture use are powerful predictors of later vocabulary. However, an additional body of research indicates that these relationships don’t always replicate, particularly when assessed in different populations, contexts, or developmental periods.
The current study examines the relationships between infant gesture, parent speech, and infant vocabulary over the course of the second year (10-22 months of age). Through the use of detailed coding of dyadic mother-child play interactions and a combination of quantitative and qualitative data analytic methods, the process of communicative development was explored. Findings reveal non-linear patterns of growth in both parent speech content and child gesture use. Analyses of contingency in dyadic interactions reveal that children are active contributors to communicative engagement through their use of gestures, shaping the type of input they receive from parents, which in turn influences child vocabulary acquisition. Recommendations for future studies and the use of nuanced methodologies to assess changes in the dynamic system of dyadic communication are discussed.
Resumo:
Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.
Resumo:
Cipher Cities was a practice-led research project developed in 3 stages between 2005 and 2007 resulting in the creation of a unique online community, ‘Cipher Cities’, that provides simple authoring tools and processes for individuals and groups to create their own mobile events and event journals, build community profile and participate in other online community activities. Cipher Cities was created to revitalise peoples relationship to everyday places by giving them the opportunity and motivation to create and share complex digital stories in simple and engaging ways. To do so we developed new design processes and methods for both the research team and the end user to appropriate web and mobile technologies. To do so we collaborated with ethnographers, designers and ICT researchers and developers. In teams we ran a series of workshops in a wide variety of cities in Australia to refine an engagement process and to test a series of iteratively developed prototypes to refine the systems that supported community motivation and collaboration. The result of the research is 2 fold: 1. a sophisticated prototype for researchers and designers to further experiment with community engagement methodologies using existing and emerging communications technologies. 2. A ‘human dimensions matrix’. This matrix assists in the identification and modification of place based interventions in the social, technical, spatial, cultural, pedagogical conditions of any given community. This matrix has now become an essential part of a number of subsequent projects and assists design collaborators to successfully conceptualise, generate and evaluate interactive experiences. the research team employed practice-led action research methodologies that involved a collaborative effort across the fields of interaction design and social science, in particular ethnography, in order to: 1. seek, contest, refine a design methodology that would maximise the successful application of a dynamic system to create new kinds of interactions between people, places and artefacts’. 2. To design and deploy an application that intervenes in place-based and mobile technologies and offers people simple interfaces to create and share digital stories. Cipher Cities was awarded 3 separate CRC competitive grants (over $270,000 in total) to assist 3 stages of research covering the development of the Ethnographic Design Methodologies, the development of the tools, and the testing and refinement of both the engagement models and technologies. The resulting methodologies and tools are in the process of being commercialised by the Australasian CRC for Interaction Design.
Resumo:
This publication is the culmination of a 2 year Australian Learning and Teaching Council's Project Priority Programs Research Grant which investigates key issues and challenges in developing flexible guidelines lines for best practice in Australian Doctoral and Masters by Research Examination, encompassing the two modes of investigation, written and multi-modal (practice-led/based) theses, their distinctiveness and their potential interplay. The aims of the project were to address issues of assessment legitimacy raised by the entry of practice-orientated dance studies into Australian higher degrees; examine literal embodiment and presence, as opposed to cultural studies about states of embodiment; foreground the validity of questions around subjectivity and corporeal intelligence/s and the reliability of artistic/aesthetic communications, and finally to celebrate ‘performance mastery’(Melrose 2003) as a rigorous and legitimate mode of higher research. The project began with questions which centred around: the functions of higher degree dance research; concepts of 'master-ness’ and ‘doctorateness’; the kinds of languages, structures and processes which may guide candidates, supervisors, examiners and research personnel; the purpose of evaluation/examination; addressing positive and negative attributes of examination. Finally the study examined ways in which academic/professional, writing/dancing, tradition/creation and diversity/consistency relationships might be fostered to embrace change. Over two years, the authors undertook a qualitative national study encompassing a triangulation of semi-structured face to face interviews and industry forums to gather views from the profession, together with an analysis of existing guidelines, and recent literature in the field. The most significant primary data emerged from 74 qualitative interviews with supervisors, examiners, research deans and administrators, and candidates in dance and more broadly across the creative arts. Qualitative data gathered from the two primary sources, was coded and analysed using the NVivo software program. Further perspectives were drawn from international consultant and dance researcher Susan Melrose, as well as publications in the field, and initial feedback from a draft document circulated at the World Dance Alliance Global Summit in July 2008 in Brisbane. Refinement of data occurred in a continual sifting process until the final publication was produced. This process resulted in a set of guidelines in the form of a complex dynamic system for both product and process oriented outcomes of multi-modal theses, along with short position papers on issues which arose from the research such as contested definitions, embodiment and ephemerality, ‘liveness’ in performance research higher degrees, dissolving theory/practice binaries, the relationship between academe and industry, documenting practices and a re-consideration of the viva voce.
Resumo:
A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
Previous research has shown the association between stress and crash involvement. The impact of stress on road safety may also be mediated by behaviours including cognitive lapses, errors, and intentional traffic violations. This study aimed to provide a further understanding of the impact that stress from different sources may have upon driving behaviour and road safety. It is asserted that both stress extraneous to the driving environment and stress directly elicited by driving must be considered part of a dynamic system that may have a negative impact on driving behaviours. Two hundred and forty-seven public sector employees from Queensland, Australia, completed self-report measures examining demographics, subjective work-related stress, daily hassles, and aspects of general mental health. Additionally, the Driver Behaviour Questionnaire (DBQ) and the Driver Stress Inventory (DSI) were administered. All participants drove for work purposes regularly, however the study did not specifically focus on full-time professional drivers. Confirmatory factor analysis of the predictor variables revealed three factors: DSI negative affect; DSI risk taking; and extraneous influences (daily hassles, work-related stress, and general mental health). Moderate intercorrelations were found between each of these factors confirming the ‘spillover’ effect. That is, driver stress is reciprocally related to stress in other domains including work and domestic life. Structural equation modelling (SEM) showed that the DSI negative affect factor influenced both lapses and errors, whereas the DSI risk-taking factor was the strongest influence on violations. The SEMs also confirmed that daily hassles extraneous to the driving environment may influence DBQ lapses and violations independently. Accordingly, interventions may be developed to increase driver awareness of the dangers of excessive emotional responses to both driving events and daily hassles (e.g. driving fast to ‘blow off steam’ after an argument). They may also train more effective strategies for self-regulation of emotion and coping when encountering stressful situations on the road.
Resumo:
This paper proposes the use of battery energy storage (BES) system for the grid-connected doubly fed induction generator (DFIG). The BES would help in storing/releasing additional power in case of higher/lower wind speed to maintain constant grid power. The DC link capacitor is replaced with the BES system in a DFIG-based wind turbine to achieve the above-mentioned goal. The control scheme is modified and the co-ordinated tuning of the associated controllers to enhance the damping of the oscillatory modes is presented using bacterial foraging technique. The results from eigenvalue analysis and the time domain simulation studies are presented to elucidate the effectiveness of the BES systems in maintaining the grid stability under normal operation.
Resumo:
The topic of this research is a novel entertainment form currently emerging from the youngest human communication technology, the Internet. This form, products based on it, and the conceptual framework describing it are all referred to as Entertainment Architecture (‘entarch,’ for short). Entarch is classified as Internet-native transmedia entertainment — it fully utilises the unique communicative characteristics of the Internet and is not based on just one medium. A number of entarch examples are explored through ‘immersive’ textual analysis — a new mode of textual analysis required for research into this kind of entertainment. As a secondary priority, entarch is related to the movie — which is chosen as an exemplary existing entertainment form finding itself in a radically uncertain formal, business, and industrial environment, and accordingly is struggling financially. Throughout, formal, business, and industrial consequences of the emergence of Entertainment Architecture are explored. This research is an example of applied cultural science, as it treats culture as a source of innovation and a complex dynamic system with technological as well as human characteristics. It analyses the dynamics of cultural change in the context of business development, consumer experience, and economic evolution — with an intrinsically transdisciplinary methodology.
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.