949 resultados para trophic cascade


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over broad thermal gradients, the effect of temperature on aerobic respiration and photosynthesis rates explains variation in community structure and function. Yet for local communities, temperature dependent trophic interactions may dominate effects of warming. We tested the hypothesis that food chain length modifies the temperature-dependence of ecosystem fluxes and community structure. In a multi-generation aquatic food web experiment, increasing temperature strengthened a trophic cascade, altering the effect of temperature on estimated mass-corrected ecosystem fluxes. Compared to consumer-free and 3-level food chains, grazer-algae (2-level) food chains responded most strongly to the temperature gradient. Temperature altered community structure, shifting species composition and reducing zooplankton density and body size. Still, food chain length did not alter the temperature dependence of net ecosystem fluxes. We conclude that locally, food chain length interacts with temperature to modify community structure, but only temperature, not food chain length influenced net ecosystem fluxes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas)—one of the most abundant large-bodied herbivores in Shark Bay—appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities—and possibly ecosystems—through non-consumptive pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trophic downgrading of ecosystems necessitates a functional understanding of trophic cascades. Identifying the presence of cascades, and the mechanisms through which they occur, is particularly important for seagrass meadows, which are among the most threatened ecosystems on Earth. Shark Bay, Western Australia provides a model system to investigate the potential importance of top-down effects in a relatively pristine seagrass ecosystem. The role of megagrazers in the Shark Bay system has been previously investigated, but the role of macrograzers (i.e., teleosts), and their importance relative to megagrazers, remains unknown. The objective of my dissertation was to elucidate the importance of teleost macrograzers in transmitting top-down effects in seagrass ecosystems. Seagrasses and macroalgae were the main food of the abundant teleost Pelates octolineatus, but stable isotopic values suggested that algae may contribute a larger portion of assimilated food than suggested by gut contents. Pelates octolineatus is at risk from numerous predators, with pied cormorants (Phalacrocorax varius) taking the majority of tethered P. octolineatus. Using a combination of fish trapping and unbaited underwater video surveillance, I found that the relative abundance of P. octolineatus was greater in interior areas of seagrass banks during the cold season, and that the mean length of P. octolineatus was greater in these areas compared to along edges of banks. Finally, I used seagrass transplants and exclosure experiments to determine the relative effect of megagrazers and macrograzers on the establishment and persistence of three species of seagrasses in interior microhabitats. Teleost grazing had the largest impact on seagrass species with the highest nutrient content, and these impacts were primarily observed during the warm season. My findings are consistent with predictions of a behaviorally-mediated trophic cascade initiated by tiger sharks (Galeocerdo cuvier) and transmitted through herbivorous fishes and their predators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive mammalian predators are major drivers of species extinctions globally. To protect native prey, lethal control is often used with the aim of reducing or exterminating invasive predator populations. The efficacy of this practice, however, is often not considered despite multiple practical and ecological factors that can limit success. Here, we summarize contemporary knowledge regarding the use and challenges of both lethal control and alternative approaches for reducing invasive predator impacts. As the prevailing management approach, we outline four key issues that can compromise the effectiveness of lethal control: release of herbivore and mesopredator populations, disruption of predator social systems, compensatory predator immigration, and ethical concerns. We then discuss the relative merits and limitations of four alternative approaches that may enhance conservation practitioner's ability to effectively manage invasive predators: top-predator conservation or reintroduction, maintaining habitat complexity, exclusion fencing, and behavioral and evolutionary ecology. Considerable uncertainty remains regarding the effectiveness of management approaches in different environmental contexts. We propose that the deficiencies and uncertainties outlined here can be addressed through a combination of adaptive management, expert elicitation, and cost-benefit analyses. Improved management of invasive predators requires greater consideration and assessment of the full range of management approaches available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trophic downgrading of ecosystems necessitates a functional understanding of trophic cascades. Identifying the presence of cascades, and the mechanisms through which they occur, is particularly important for seagrass meadows, which are among the most threatened ecosystems on Earth. Shark Bay, Western Australia provides a model system to investigate the potential importance of top-down effects in a relatively pristine seagrass ecosystem. The role of megagrazers in the Shark Bay system has been previously investigated, but the role of macrograzers (i.e., teleosts), and their importance relative to megagrazers, remains unknown. The objective of my dissertation was to elucidate the importance of teleost macrograzers in transmitting top-down effects in seagrass ecosystems. Seagrasses and macroalgae were the main food of the abundant teleost Pelates octolineatus, but stable isotopic values suggested that algae may contribute a larger portion of assimilated food than suggested by gut contents. Pelates octolineatus is at risk from numerous predators, with pied cormorants (Phalacrocorax varius) taking the majority of tethered P. octolineatus. Using a combination of fish trapping and unbaited underwater video surveillance, I found that the relative abundance of P. octolineatus was greater in interior areas of seagrass banks during the cold season, and that the mean length of P. octolineatus was greater in these areas compared to along edges of banks. Finally, I used seagrass transplants and exclosure experiments to determine the relative effect of megagrazers and macrograzers on the establishment and persistence of three species of seagrasses in interior microhabitats. Teleost grazing had the largest impact on seagrass species with the highest nutrient content, and these impacts were primarily observed during the warm season. My findings are consistent with predictions of a behaviorally-mediated trophic cascade initiated by tiger sharks (Galeocerdo cuvier) and transmitted through herbivorous fishes and their predators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: In diabetic ventricular myocytes, transient outward potassium current (I-to) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on I-to since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (beta AR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the beta AR agonist isoproterenol recovers I-to amplitude to normal values. Methods: Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. I-to current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Results: Stimulation of beta AR activates first a G alpha s protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the G alpha i protein. This leads to the activation of the beta AR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. Conclusion: beta(2)AR stimulation activates a G alpha s and G alpha i protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple ecological models that predict trophic responses to bottom-up forcing are valuable tools for ecosystem managers. Traditionally, theoretical ecologists have used resource-dependent functional responses to explain the modification of food chains exposed to bottom-up perturbations. These models predict alternating positive, negative and zero responses at each trophic level. More recently, ratio-dependent functional response models that predict proportional increases at each level have challenged this paradigm. The present study tested the predictions of the 2 hypotheses empirically by comparing the relative biomasses of 4 trophic levels of an estuarine seagrass food chain in relatively undisturbed, low-nutrient catchments and ‘developed’ catchments subjected to a prolonged period of nutrient enrichment. We found that nutrient-enriched sites had significantly greater biomass of both epiphytic algae and grazing invertebrates; however, the bottom-up forcing of nutrients was attenuated at higher trophic levels (occupied by juvenile and piscivorous fish), with no significant effect of catchment development. This disconnect in the upward cascade of energy may be due to a number of possible reasons including high levels of diversity and omnivory, trophic subsidy within the system or the strength or nature of perturbations. Although the predictions of both hypotheses failed to hold across all trophic groups, ratio dependence was prevalent at the lower levels of the food chain, which has implications for catchment management.