109 resultados para trnL-trnF
Resumo:
槽舌兰属为兰科树兰亚科万代兰族指甲兰亚族植物,大部分种类为中国特有种,部分种类分布到越南、泰国、缅甸等国家和地区。长期以来,本属植物由于与近缘属间的界线模糊不清,而属内性状变异大,是兰科植物系统学研究的疑难属之一。本文通过对槽舌兰属及部分近缘属植物的形态地理学、细胞学、传粉生物学、分子系统学等研究,重新界定了槽舌兰属,确认该属植物的种类,提出一个新的属下分类系统,讨论了槽舌兰属属内和近缘属间的系统学关系,同时对槽舌兰属高山组植物的演化进行了探讨。 1.槽舌兰属及近缘属形态学性状 我们通过标本研究和野外观察,对槽舌兰属和近缘属植物的形态学性状及其变异式样进行了详细比较分析,重新评价各性状的分类学价值,认为蕊喙、蕊柱翅、花粉块类型等对于槽舌兰属与近缘属的划分具有重要意义;胼胝体类型、粘盘柄形状、距的类型、唇瓣中裂片边缘状况等对属下分类具有重要的意义;而中裂片、侧裂片和距的形态对槽舌兰属的种的划分具有重要的意义。传统上作为划分种依据的胼胝体的数目、花序上花的数目、茎的长短等在种内变异较大,不宜用作种划分的依据。 2. 槽舌兰属植物核型研究 我们报道了8种槽舌兰属植物的体细胞的染色体数目,其中6种为首次报道,并对其中7个种的核型进行初步分析。目前已进行研究的槽舌兰属植物的染色体数为2n=38,体细胞分裂中期的染色体长小于2 um, 染色体类型以中部和近中部着丝粒染色体为主,部分染色体成点状。槽舌兰属不同染色体数目相等、染色体形态和大小相似,从一个方面反映了槽舌兰属植物是一个单系类群。 3. 滇西槽舌兰(Holcoglossum rupestre)的传粉生物学研究 我们选择滇西槽舌兰的进行传粉生物学研究以探讨本属植物系统学和进化,发现滇西槽舌兰的传粉系统为兰科植物中少见的甲虫专化传粉系统,而且滇西槽舌兰的传粉系统处于一种不稳定的状态。弯腿金龟(Hybovalus bioculatus)是滇西槽舌兰唯一的传粉者,以两个不同的部位携带花粉团,即前腿和臀部,并存在着两种不同的传粉机制。滇西槽舌兰这种不稳定的传粉系统似乎表明该系统可能正处于转变阶段。繁殖系统的实验表明自然状况下滇西槽舌兰结实率由传粉率决定,而自然状况下低的结实率可能由两方面的原因导致:很低的传粉效率和有效的防止自花传粉机制。 4. 槽舌兰属植物的分子系统学研究 我们对9种槽舌兰属植物和2种万代兰属植物的叶绿体基因组trnL-F序列进行了测定,并从基因库下载了14种万代兰族植物和2种用作外类群的美洲附生兰亚科植物的trnL-F序列。测序结果发现槽舌兰属的trnL-F序列存在着很大的差异:H. lingulatum的trnL-F存在大片段的缺失,而H. kimballianum的trnL-F存在许多小片段的插入。分子系统学分析表明槽舌兰属为一单系类群,支持将Vanda subulifolia和V. amesiana转置入槽舌兰属中,强烈支持由H. sinicum、H. flavescens、H. rupestre和 H. weixiense构成槽舌兰属属内分支。 5.槽舌兰属的分类学修订 在广泛查阅国内外馆藏标本和开展多次野外调查的基础上,并结合细胞学和分子系统学研究结果,我们重新界定了槽舌兰属。该属植物的主要特征:茎短;叶肉质,细长半圆柱形,部分种叶略扁而成“V”形,其近轴面具一纵槽,先端渐尖,不裂;总状花序侧生,花疏生;花苞片比花梗和子房短;侧萼片或多或少呈镰形;花瓣通常具爪,与中萼片相似;唇瓣3裂;侧裂片直立;中裂片较大,基部常有附属物;蕊柱粗短,具翅,无蕊柱足或具很短的足;蕊喙2裂;花粉团蜡质,2个,球形,具裂隙。确定槽舌兰属目前包括11种(包括2个新种):H. subulifolium、H. amesianum、H. kimballianum、H. lingulatum、H. omeiense、H. quasipinifolium、H. sinicum、H. rupestre、H. flavescens、H. wangii和H. weixiense。 H. tangii和Vanda saprophytica被分别处理为H. lingulatum与H. kimballianum的异名,而H. tsii的分类学地位尚有待进一步研究。同时在我们研究的基础上,提出槽舌兰属一个新属下的分类系统: 槽舌兰属 Holcoglossum 短距亚属 Holcoglossum subgen. Amesianum H. subulifolium,H. amesianum; 槽舌兰亚属Holcoglossum subgen. Holcoglossum 槽舌兰组Holcoglossum sect. Holcoglossum H. kimballianum,H. lingulatum,H. wangii,H. omeiense,H. quasipinfolium; 高山组Holcoglossum sect. Sinicum H. sinicum,H. rupestre,H. flavescens,H. weixiense。 6.槽舌兰属属内和近缘属间系统学关系探讨 通过广泛的形态地理研究并结合传粉生物学和分子系统学研究结果,我们对槽舌兰属属内和属间关系进行的探讨。槽舌兰属短距亚属与万代兰属和指甲兰属比较接近,是槽舌兰属中比较原始的类群; 槽舌兰组植物的分布中心介于短距亚属和高山组分布中心之间,而该组植物的许多性状也表现出过渡性质。在‘Aerides-Vanda alliance’中,我们认为钻喙兰属和万代兰属是该类群中比较原始的属,而鸟舌兰属(Ascocentrum)可能是介于指甲兰属和举喙兰属(Seidenfadenia)之间,支持传统的观点认为Papilionanthe位于Vanda和Aerides之间但更接近于Aerides,但同时我们认为举喙兰属可能是‘Aerides-Vanda alliance’中最为特化的类群。 7. 高山组所属物种形成探讨 槽舌兰属高山组的四个种均为中国特有植物,主要分布云南西北部地区,其中H. weixiense、 H. rupestre、H. sinicum3个种只局限分布在云南的西北部地区。尽管高山组各个种比较相似,但形态上已经分化,生境也不同而且存在着对应关系。细胞学实验结果发现槽舌兰属高山组的四种植物均为二倍体(2n=38),与槽舌兰属的其他种类一致,这表明该组植物在横断山区的分化时染色体的数目并没有变化,高山组植物的三种横断地区特有植物可能为裂生特有。高山组4个种的1300bp的trnL-F总共只有10个碱基的差异,在trnL-F分支图中,高山组分支作为单系类群得到强有力的支持(BP=94%)。高山组植物trnL-F序列微小的差别反映了该组植物可能是在近期通过快速物种形成进行分化的。这些资料说明槽舌兰属高山组植物是近期通过适应辐射进行分化以适应不同生境,而且可能是生境和传粉系统共同驱动下形成的。
Resumo:
毛茛科乌头属全世界约有300余种,主要分布在北半球温带地区,包括三个亚属,即牛扁亚属、乌头亚属和露蕊乌头亚属。我国西南横断山区是乌头属植物的重要分布区,已记载的种类达100余种,很多种都为地方特有。由于缺乏野外观察和标本不够丰富等原因,有些种类的分类处理尚不能令人满意,应予修订。乌头属的属下系统以及与近缘属之间的关系也不十分清楚,还需进一步研究。本文对我国乌头属植物的重要分布区四川的乌头属植物进行了分类修订,同时通过形态学、细胞学和分子系统学等方面的研究对乌头属的系统发育进行了探讨。结果如下: 1.分类修订 通过广泛的野外观察、文献查阅和标本研究,对乌头属的形态性状在居群间和居群内的变异式样进行了比较分析,发现叶分裂程度、上萼片的形状和花梗毛被等性状是较为可靠的分种依据,但是在个别情况,这些性状也会在同一种的同一居群内或不同居群间发生变化。花瓣和种子的特征对于属下划分有重要意义。 本文确认四川乌头属植物有45种、11变种,另有2种和1变种暂存疑。30种、22变种降为异名;作出新组合2个,其中包括1个改级新组合。紫乌头和保山乌头为四川新分布记录。对康定乌头、川鄂乌头和狭裂乌头进行了模式选定。初步澄清了东俄洛乌头和狭裂乌头等种类中长期存在的名实混乱。本文还给出了各个种的形态描述、地理分布图以及分亚属、分系和分种检索表。 2.细胞学 对国产14种乌头属植物进行了细胞学研究。染色体基数为x=8。研究的所有种都为二倍体(2n=16)。各个种的核型公式如下:狭盔高乌头2n=2m+10sm+4st; 赣皖乌头2n=2m+8sm+6st; 西南乌头2n=4m+10sm+2st; 镰形乌头2n=4m+12sm; 弯喙乌头2n=4m+12sm; 东俄洛乌头2n=2m+12sm+2st; 毛瓣乌头, 来自两个居群, 2n=2m+14sm(1sat)和2n=2m+14sm(2sat); 狭裂乌头2n=2m+10sm+4st; 大渡乌头2n=8m+8sm; 展毛大渡乌头2n=6m(1sat)+8sm(2sat)+2st; 贡嘎乌头2n=2m+14sm; 刷经寺乌头, 来自四个居群, 分别为2n=4m+10sm+2st, 2n=6m+10sm, 2n=2m+14sm, 2n=2m+14sm; 工布乌头,来自两个居群, 2n=2m+10sm+4st和 2n=6m+10sm; 岩乌头2n=2m+14sm; 美丽乌头2n=4m+12sm; 康定乌头2n=4m+12sm。其中赣皖乌头、弯喙乌头、东俄洛乌头、狭裂乌头、大渡乌头、展毛大渡乌头、贡嘎乌头、工布乌头和康定乌头9种的染色体数目和核型为首次报道。乌头属植物通常都有两对较大的染色体,即第一对为中部着丝点染色体,第二对为近中部着丝点染色体,其余染色体相对较小,为中部着丝点、近中部着丝点或近端部着丝点染色体。牛扁亚属的核型与乌头亚属在染色体大小、形态及不对称性等方面有明显的区别。随体的数目和位置在同一种内的不同居群中都有变化。核型不对称性表现有2B、3B、2C和3C型。 对国产乌头属植物的染色体数目资料进行了统计。国产61种乌头属植物已有染色体报道,占国产乌头属植物的41%。二倍体、四倍体、六倍体和八倍体都有发现,有5种乌头属植物表现为种内多倍性。横断山区分布的乌头亚属植物多为二倍体,多倍体通常在主要分布于华北和东北地区的乌头亚属的乌头系中观察到。横断山区的牛扁亚属植物多数为四倍体。少数种的染色体具有B-染色体。 3.分子系统学 通过对翠雀族23种植物两个DNA片段ITS和trnL-F进行简约分析和邻接法分析,构建了乌头属三个亚属之间及其与近缘属的系统关系树。结果如下:翠雀族作为单系类群得到了较强的支持;翠雀族中,与乌头属关系较近的是翠雀属;在乌头属中,乌头属作为单系类群未得到支持,除非将露蕊乌头亚属排除在外;牛扁亚属和乌头亚属均为单系群,二者互为姐妹群;新建的唐古特乌头亚属与乌头亚属聚在一起不能分开,其亚属的地位未得到支持。 采用ITS序列,选取代表乌头亚属植物不同组、系以及不同地理分布区的54个样品,进行了乌头亚属的系统发育研究。乌头亚属的单系发生得到了支持。多果乌头位于乌头亚属的基部,与其他乌头亚属植物构成姐妹群关系。岩乌头系和褐紫乌头系也各自成为分支, 但唐古特乌头系、圆叶乌头系、保山乌头系与短柄乌头系共同组成一个单系类群,而显柱乌头系、兴安乌头系、乌头系、蔓乌头系和准噶尔乌头系共同组成一个单系类群。从上述结果来看,这些系或组是否应当划分及其系统关系均应重新考虑。在ITS系统树中,中国北方分布的乌头亚属植物与欧洲、北美及东亚的乌头亚属植物有较近的关系;来自横断山区的种类外部形态差异显著,但遗传差异却很小,说明这一地区的种可能是近期形成的。本研究的ITS序列分析结果与种子和花瓣的形态相吻合,种子和花瓣的特征有可能在一定程度上反映了乌头亚属的系统发育关系。
Resumo:
半寄生植物马先蒿属(Pedicularis)是列当科(Orobanchaceae)中最大的属,也是北温带被子植物最大的属之一。该属至少有500种植物,主要分布在北半球的高山、亚高山地区或高纬度地区,其中超过一半的种类分布在东喜马拉雅至横断山区,构成该地区高山植物区系的主要成分。马先蒿属花部器官的强烈分化程度在被子植物中极为罕见,导致这种分化发生的机制仍是难解之谜。马先蒿属下系统非常混乱,迄今为止该属属下分类系统不下10个。关于该属的起源时间、地点及迁移散布过程只是基于一些间接证据的推测。针对以上问题,本文通过大量的标本查阅、野外考察、传粉生物学观察以及分子系统学研究,得出了一些初步的结果。 1.形态学 通过大量的野外考察及标本观察,发现马先蒿属花部器官变异非常复杂,是区分近缘种的主要性状依据,但是花部器官存在明显的平行进化现象,不适合作为划分群、组等属下高级分类单元的主要依据;而营养性状比较保守,可作为划分群、组的主要依据。通过考证,发现直管群万叶系的德钦马先蒿(P. deqinensis)实属轮枝群纤细系多枝马先蒿(P. ramosissima)的异名。同时发现一个新种,即折喙马先蒿(P. inflexirostris),该种属于直管群的万叶系。 2.传粉生物学 对27种马先蒿的昆虫传粉行为进行了初步的观察。发现横断山区的马先蒿主要靠熊蜂进行有效的传粉。昆虫的传粉方式有两种,即背触式(Nototribic)和腹触式(Sternotribic)。不同花冠类型的马先蒿属植物中,昆虫的传粉方式也有所区别。对短管、无喙、无花蜜的马先蒿,昆虫主要以腹触式完成传粉;对短管、无喙、具花蜜的马先蒿,昆虫既可以通过背触式也可以通过腹触式完成传粉;而对短管、具喙和长管、具喙的马先蒿,昆虫都以腹触式完成传粉。没有发现鳞翅目的昆虫访问长管类型的马先蒿。不同花冠类型传粉方式的不同说明马先蒿花部形态结构和传粉媒介的行为之间存在协同进化关系。 3.核rDNA ITS分析 对12个群的42种马先蒿的核rDNA ITS序列进行了分析。基于ITS序列构建的基因树和经典的属下分类系统很不一致,基因树上的大部分分支和经典系统中的高级分类单元不相吻合,原因可能是马先蒿属花部器官发生了平行进化,而经典的分类系统过于权重这些花部形态性状。此外,发现在横断山区这一相对狭小的地域范围内,nrDNA ITS序列在马先蒿种间存在很大差异。造成此差异的原因可能有两个方面:一方面是马先蒿属的起源和分化的时间可能较早,不同的支系从其他地域先后多次迁入横断山区;另一方面可能是由于半寄生植物马先蒿中快速的分子进化造成的。 4.叶绿体基因组trnT-F区序列分析 对8个群的11种马先蒿的trnT-F区序列进行了分析,发现种间存在大量的插入/缺失序列,其中甘肃马先蒿(P. kansuensis)和大王马先蒿(P. rex)分别在trnT-trnL(UAA)和trnL–trnF基因间区发生了长达228bp和303bp碱基序列缺失,说明半寄生植物的叶绿体基因组也可能存在大量基因丢失现象。 5. GLOBOSA-like MADS-box基因的研究 对11种马先蒿属植物(8个群)中控制花瓣发育的GLOBOSA(PGLO)基因的部分片段进行了分离、克隆和测序,发现该基因在种间发生了明显的分化,但是碱基的变异主要发生在非编码区或非结构域,基因的同义突变率远高于非同义突变率,说明PGLO基因的进化受到强烈的功能制约。PGLO基因在马先蒿种间的明显分化表明:在辐射分化类群中,调节基因也可能发生了快速分化。对11种马先蒿属植物的PGLO基因树、nrDNA ITS基因树以及trnT-F基因树的比较发现:三个树图在结构上既有一致、也有相互矛盾之处,推测可能是因为这些基因具有不同的遗传体系或经历了不同的进化历史所致,另一方面说明GLOBOSA基因在探讨近缘类群系统发育关系方面的价值有待进一步验证。
Resumo:
通过形态学、解剖学、孢粉学、植物地理学及分子系统学等方面的研究,探讨了中国碎米蕨类及其相关类群的系统关系,并对它们的分类进行了修订。 1.解剖学 对碎米蕨类及相关类群36个种的叶表皮特征进行了研究,结果发现该性状对于划分大的类群具有一定的系统学意义。大多数中国蕨科成员如粉背蕨属、旱蕨属和黑心蕨属等连同裸子蕨科中的泽泻蕨属和金毛裸蕨属在叶表皮性状上比较一致。它们之间的亲缘关系较近,是碎米蕨类成员。金粉蕨属、粉叶蕨属、翠蕨属和铁线蕨属与上述类群不同,其上表皮细胞或上下表皮细胞均明显加长,但气孔器仍同碎米蕨类植物一样,为无规则型、极细胞型或腋下细胞型。在所研究的类群中,只有凤尾蕨属和Anopteris的气孔器为聚合型。 2.孢粉学 在光镜和扫描电镜下对中国蕨科、裸子蕨科和凤尾蕨科等83种 (含变种) 植物的孢子进行了观察。根据孢子的颜色、结构和表面纹饰等可将其分成3种类型:大多数中国蕨科成员如粉背蕨属等和裸子蕨科中的泽泻蕨属和金毛裸蕨属的孢子同属第一种类型,颜色较深,表面纹饰由周壁形成。珠蕨属和凤丫蕨属的孢子属第二种类型,颜色较淡,周壁薄,由外壁和周壁共同形成表面纹饰。金粉蕨属、凤尾蕨属、翠蕨属和粉叶蕨属的孢子为第三种类型,颜色较浅,由外壁形成表面纹饰的基本轮廓,具明显的赤道翼。从孢粉学的角度来看,中国蕨科和裸子蕨科都是不自然的。中国蕨属和薄鳞蕨属的孢子形态同粉背蕨属相似,应并入后者。另外,同属新旧世界的种类其孢子纹饰往往有明显的区别, 可能代表了不同的类群。 3.分子系统学 测定了碎米蕨类及相关类群34种植物的rbcL 和trnL-F序列,并结合GenBank上下载的相关资料进行分析。结果发现中国蕨科和裸子蕨科都不是自然类群。在系统树上,Cheilanthes、隐囊蕨属、粉背蕨属、旱蕨属、黑心蕨属等同裸子蕨科中的泽泻蕨属和金毛裸蕨属等聚在一起,构成碎米蕨群。珠蕨属、凤丫蕨属和Llavea则形成另一分支,不是碎米蕨类成员。金粉蕨属在分支图上与南亚的Actiniopteris形成姐妹群,并与凤尾蕨属、粉叶蕨属和翠蕨属等关系近缘,放入凤尾蕨类应更为合适。 系统分析的结果表明,旧世界分布的类群与美洲的同属植物大都关系疏远,如黑心蕨属、金毛裸蕨属和Cheilanthes等。另外,亚洲分布的中国蕨属、粉背蕨属、碎米蕨属、薄鳞蕨属、隐囊蕨属和拟旱蕨属Mildella的成员聚在一起,它们之间的系统关系因为形成了多歧分支而没有得到很好的解决。但是,薄鳞蕨属、中国蕨属和大理碎米蕨等同粉背蕨属的成员聚在一起,并入后者应更为合理。另外,宜昌旱蕨与碎米蕨属的成员关系近缘,支持将前者转入碎米蕨属。 4.植物地理学 碎米蕨类植物的间断分布非常明显。泽泻蕨和戟叶黑心蕨等在形态特征上与美洲的同属种类有明显的区别,可能代表了不同的类群。大多数亚洲碎米蕨类成员如粉背蕨属、中国蕨属和薄鳞蕨属等以中国西南部的横断山区或喜马拉雅为分布中心,可能与喜马拉雅山的隆起有关。 5.分类处理 综合各方面的研究成果,作者认为国产碎米蕨类包括6个属3个群:黑心蕨属、旱蕨属、粉背蕨属、碎米蕨属、拟泽泻蕨属和拟金毛裸蕨属。《中国植物志》中记载的隐囊蕨属、毛旱蕨和旱蕨类成员因其系统学位置不清,暂时作为独立的群处理。 在野外考察和大量标本(包括模式)考证的基础上,对国产碎米蕨类及其相关类群 (特别是粉背蕨属) 进行了修订, 澄清了一些种的分类问题。发现1新种,对1新变种进行了拉丁文描述,使其名称有效。提出新组合5个,另有6种7变种被首次归并。
Resumo:
利用松科植物特殊的遗传体系(叶绿体基因组一父系遗传、线粒体基因组—母系遗传、核基因组一双亲遗传),我们对高山松及其两个亲本种进行了广泛的群体取样,通过线粒体基因nadl、叶绿体基因rbcL和trnL-F基因间区以及低拷贝核基因4CL的序列分析或PCR-RFLP分析,为高山松同倍体杂种起源假说提供了翔实的遗传学证据,同时在个体水平上探讨了高山松不同群体的遗传组成、群体遗传结构、基因交流方向、群体建立过程以及杂种基因组的进化。具体结果如下: 1.细胞质基因组分析 1)线粒体基因nudl分析 本研究对油松、高山松和云南松的19个群体、295个个体的线粒体基因nadl的一个内含子进行了序列分析或PCR-RFLP分析,共检测到3种线粒体DNA单倍型-A、B和C。油松所有的取样群体仅含单倍型A;除BX群体外,所有的云南松群体仅含单倍型B; 10个高山松群体中,5个群体固定单倍型A,4个群体固定单倍型B,1个群体(ZD)分布有A和B两种单倍型。2)叶绿体rbcL基因分析 对同一组群体的rbcL基因进行序列分析或PCR-RFLP分析,共检测到两个变异位点和三种叶绿体单倍型(TT、TC和GC)。TT和GC分别是油松和云南松种特异性叶绿体单倍型,而在高山松群体里则三种单倍型均有分布,而且TC单倍型广泛地分布在7个杂种群体中,该单倍型很可能来源于点突变或第三个已灭绝的亲本。rbcL基因检测到的高山松群体分化系数很高(Gst=0.533)。 3)叶绿体trn L-F区序列分析 叶绿体trnL-F分子标记检测到的不同单倍型的差异主要是由引物“e”下游120碱基处一个多聚T结构的长度变异所致(叶绿体SSR位点)。10个高山松群体中共检测到5种叶绿体单倍型,其中两种主要的单倍型(9T和11T)分别为油松和云南松的种特异性单倍型,其他单倍型均为非典型单倍型。群体遗传结构分析表明:杂种群体表现最高的遗传多样性,而且trnL-F分析得到的高山松群体的分化系数也很高( Gst=0.443)。 总之,对高山松、油松和云南松的同一组群体取样进行的细胞质基因组分析表明:高山松群体分布有油松和云南松种特异性的线粒体和叶绿体单倍型,该细胞质DNA单倍型的地理分布为假说“高山松为油松和云南松的的二倍体杂种”提供了翔实的遗传学证据。油松和云南松在不同的杂种群体中分别做父本和母本,即两亲本在杂交过程中发生了双向基因交流。群体遗传结构分析发现高山松群体表现最高的遗传多样性,而且群体间的分化系数很高。不同的杂种群体在遗传组成上的差异表明他们经历过不同的建立和进化历史。从线粒体和叶绿体单倍型的地理分布可以看出杂种群体的建立曾经历强烈的奠基者效应和回交。青藏高原的隆升对高山松的起源、杂种群体的适应辐射以及保持产生了重要的影响。川西南和滇西北作为青藏高原的东边边界,很可能是当初云南松和油松分布的重叠区及杂交地带,即高山松的起源地。 2.核基因4CL分析 对高山松、油松和云南松的19个群体、32个个体的低拷贝核基因4CL进行了克隆及序列分析,获得的78条序列可分为两种类型(类型A和类型B)。这两种类型明显的差别是类型A相对于类型B在内含子区有- 20bp的缺失。以华山松的3条序列为外类群,对得到的78条序列进行基因谱系分析,发现所有的序列分成明显的两支,分别对应于类型A和类型B,而且每一支均包含三个种的部分序列,表明4CL基因在这三个种分化之前就已发生重复。另一个明显的特点是某个种的一条序列与另一个种的序列比其与同种的其他序列关系更近,可能因基因交流(杂交和渐渗)、非共祖、致同进化和重组等进化事件所致。三种松树中共检测到4CL基因序列的两种类型和六个亚类型,高山松群体中没有发现杂种独特的类型或亚类型。高山松和云南松共享三种序列亚类型以及最多的序列多态性,表明这两个种之间曾存在广泛的基因交流。
Resumo:
本文采用来自三个基因组——叶绿体、线粒体和核基因组的六个DNA序列片段,对壳斗目的系统发育进行了重建,主要探讨了壳斗目八个科的科间系统演化关系及不同基因系统树间存在冲突的原因。在此基础上针对具体问题,进一步选用核光敏色素PHYC基因序列对杨梅科在壳斗目中的系统位置进行了更深入的探讨。在对壳斗目开展大量分子系统学研究的同时,还对胡桃科化香树属Platycarya的花形态发生过程进行了详细的扫描电镜观察,讨论了胡桃科单性花的起源和演化问题。主要内容包括: 1 基于四个叶绿体DNA序列的分析 以金缕梅属Hamamelis 和朴树属Celtis 为外类群,对壳斗目几乎所有属的代表共31种植物的trnL-F、matK、rbcL和atpB 序列进行了测定,通过四个序列单独和联合分析,得到如下结果:除rbcL基因树由于信息位点少而分辨率较低之外,壳斗目各科作为单系类群在各种分析中都得到了较强的bootstrap(BS)支持。壳斗目的八个科分为三支:南青冈科Nothofagaceae是基部分支;壳斗科Fagaceae接着分出;核心高等金缕梅类 (core “higher” hamamelids) 聚为一支, 这三支也都得到了强支持。基于不同序列构建的系统发育树,主要区别在于对核心高等金缕梅类六个科,即第三支内部分支关系分辨的不同。在trnL-F树上核心高等金缕梅类又分成两个亚支,一亚支是木麻黄科Casuarinaceae-(桦木科Betulaceae-核果桦科Ticodendraceae),另一亚支是杨梅科Myricaceae-(胡桃科Juglandaceae-马尾树科Rhoipteleaceae);matK树上,杨梅科则与前一亚支,即木麻黄科和桦木科聚在了一起;atpB树上杨梅科又成了其他所有核心高等金缕梅类的姐妹群;基于四序列联合分析构建的系统发育树的拓扑结构基本上与matK基因树一致。胡桃科和马尾树科的亲缘关系在对不同序列的分析中都得到了较强的支持,但对杨梅科的聚类,支持率都很弱。 2 基于线粒体matR基因序列的分析 除南青冈科作为其他所有壳斗目类群的姐妹群得到强支持外,其余的壳斗目的科间系统发育关系都未得到很好的分辨。最简约树的严格一致树显示杨梅科和木麻黄科聚在一起得到的BS支持不强,另外桦木科和核果桦科,壳斗科和马尾树科分别聚在一起,但得到的支持都未超过50%。 3 基于核核糖体18S rDNA序列的分析 在18S rRNA基因最简约树的严格一致树上,壳斗目被分为两支,一支由壳斗科和南青冈科组成,另一支由核心高等金缕梅类组成,BS支持率均不高。核心高等金缕梅类又分成两个亚支,桦木科,核果桦科和木麻黄科组成的亚支得到了较强的支持,由胡桃科、马尾树科和杨梅科组成的另一亚支得到了更强的BS支持。胡桃科和桦木科的单系性都得到了分辨,虽然BS支持率不高。 4 六个DNA序列的联合分析 通过对六个DNA序列的单独和联合分析,探讨了引起基因树间拓扑结构冲突的可能原因。分别用MP法、NJ法和贝叶斯推论对壳斗目进行了系统发育重建,联合分析提供了分辨率最好、支持率最高的壳斗目谱系关系图: 1、 南青冈科是壳斗目其余类群的姐妹群;2、各科的单系性得到很好支持;3、壳斗科是核心高等金缕梅类的姐妹群;4、核心高等金缕梅类分为两个亚支,一亚支包含桦木科、核果桦科和木麻黄科;另一亚支由胡桃科、马尾树科和杨梅科组成,杨梅科是胡桃科和马尾树科的姐妹群,这一亚支的BS支持率仍然很弱。胡桃科和壳斗科的属间关系未得到很好分辨,多数分支的BS支持率和后验概率值都不高。 5 基于核PHYC基因序列证据对杨梅科系统位置的分析 用壳斗科的栎属Quercus和南青冈科的南青冈属Nothofagus做外类群,核心高等金缕梅类分为两支。桦木科和木麻黄科聚在一起,胡桃科和马尾树科为姐妹群再与杨梅科构成一支,这两个分支都得到很强的BS支持。核基因分析支持六个序列联合分析对核心高等金缕梅类各科间关系的分辨。 6 化香树的花器官发生 在扫描电镜下系统地研究了柔荑花序类植物化香树的雄花、雌花和两性花的发生和发育过程。结果表明:该植物雄花和两性花中小苞片和花被片缺乏;雄蕊轮状发生,成熟阶段雄蕊的不规则排列是由于花托的延伸且和苞片的基部融合后造成的;雌花中存在环状的花被片结构但极度退化,雌花两侧的小苞片和花被片的侧面部分构成小坚果的翅;化香树的两性花向心发生,雄蕊先发生,然后雌蕊发生。胡桃科中的单性花是由两性花退化而来。 本研究的主要发现和结论如下: 1第一次用来自不同基因组的多个DNA 序列探讨了壳斗目八科的系统发育关系;取样包括了所有科的几乎所有的属;所得到的系统树具有较高的分辨率和置信度。主要结论是壳斗目的八个科分为三支,南青冈科是最基部的分支,壳斗科做为核心高等金缕梅类的姐妹群第二个分出,核心高等金缕梅类聚在一起,并进一步分为两个亚支:第一亚支包括桦木科、核果桦科和木麻黄科;另一亚支则由胡桃科、马尾树科和杨梅科组成,杨梅科是胡桃科和马尾树科的姐妹群。 2用核光敏色素PHYC基因较好的解决了杨梅科的系统位置,尽管造成杨梅科在叶绿体基因树和核基因树上具有不同系统位置的原因尚需要进一步探讨。在PHYC基因树上桦木科和木麻黄科聚在一起,胡桃科和马尾树科为姐妹群再与杨梅科构成一支,这两个分支都得到很强的支持。 3首次在壳斗目植物中用扫描电镜观察到了雄花的发生过程和两性花的发生方式,澄清了在化香树属植物中关于雄蕊排列方式、花被式样、以及果翅来源等问题的疑惑或争论。
Resumo:
松科植物的核基因组十分庞大,基因常形成复杂的基因家族,核rDNA ITS 区在基因组内和基因组间存在广泛的长度和序列变异,但染色体数目和核型却高度保守,几乎均为二倍体(2n=24),与被子植物频繁的多倍化和高度均一的ITS区形成鲜明对比;叶绿体、线粒体和核基因组分别为父系、母系及双亲遗传,这种独特的遗传体系组合为系统发育重建研究提供了便利条件。因此,松科植物不仅是阐明基因树/物种树这一理论问题的理想试材,而且是基因和基因组进化及核rDNA致同进化机制研究的好材料。此外,松科植物的进化历史悠久,很多类群经历了多次重大的地质历史事件,并呈各种间断分布格局,其生物地理学问题受到广泛关注。本文对落叶松属所有物种(L. lyallii除外)和大部分变种的叶绿体基因组trnT-trnF区、低拷贝核4CL基因家族 (4-香豆酸辅酶A连接酶基因)及多拷贝核rDNA ITS区进行了序列分析,重建了该属的系统发育并揭示了其地理分布格局的形成过程,同时基于克隆和基因谱系分析,探讨了核4CL和rDNA ITS这两个基因家族的进化式样及规律。 1. 叶绿体trnT-trnF区和核rDNA ITS区的研究结果表明:落叶松属的种间遗传分化程度很低,北美的种类构成一个单系分支,并为欧亚种类的姐妹群。短苞鳞的欧亚落叶松组和长苞鳞的欧亚红杉组之间的分化较早,接近欧亚和北美种类间的分化时间。换句话说,苞鳞长短的分化在落叶松属中至少发生过两次,其中一次在落叶松属分化的初期,另一次在北美的种类中。结合化石、地史及气候资料,我们推测:落叶松属的共同祖先通过白令陆桥扩散,并形成欧亚和北美两支,然后在不同的板块上独立进化。落叶松组的泛北极分布是冰期后的回迁形成的,而红杉组的物种在第三纪全球气温降低时向南迁移,进而形成东亚-北美间断分布,特别是欧亚红杉组的祖先曾伴随青藏高原的隆升而发生辐射分化。 2. 在落叶松属4CL基因家族的研究中共获得44个差异的克隆,除华北落叶松外,其它种类均含2-4个成员。系统发育分析表明: 4CL基因频繁发生重复/丢失,并导致谱系拣选。该基因在落叶松属的共同祖先中发生一次重复,形成4clA和4clB,4clA再次发生基因重复形成4clA1和4clA2。重复产生的这两对并系基因拷贝在进化速率上呈显著差异,其中一个拷贝的进化速率明显加快,可能与进化制约的减弱或功能分化有关。结合其它核基因的研究结果,我们推测频繁的基因重复/丢失可能是形成和维持松科植物庞大核基因组的重要机制之一。 3. 对落叶松属101个nrDNA ITS克隆进行了序列及分子进化分析,发现极少数克隆存在较大的长度及(或)序列变异,并可能为假基因或重组体,其它克隆间的序列分化水平较低。因而,落叶松属核rDNA的致同进化速率比松科中两个古老的属(松属和云杉属)快。该致同进化速率的加快可能与落叶松属年轻的进化历史及染色体上较少的rDNA位点数目有关。由于一些特异克隆含嵌合序列及极高的序列变异,推测它们可能来源于物种进化过程中染色体重排形成的小位点(minor loci)或为孤独基因(orphons)。此外,我们发现nrDNA ITS克隆的分布式样与落叶松属的分化及地理分布格局的形成有密切关系:在欧亚红杉组中,克隆常按分类群(物种或变种)形成单系分支,表明这些类群的分化曾伴随着强烈的nrDNA ITS奠基者效应;相反,在欧亚落叶松组中,所有物种的克隆均混杂在一起,说明这些物种的分化时间较晚或在冰期后回迁的过程中曾发生频繁的种间基因交流。
Resumo:
分子系统学建立在实验和计算的基础之上。DNA快速测序技术的普及为分子系统学家提供了大量数据,而序列分析技术则是探索数据发现知识的重要工具。在基因组时代,随着大量模式生物完整基因组序列的获得,分子系统学正面临着前所未有的机遇和挑战。一方面,生命之树计划有助于确定新的模式生物和开展相应的基因组计划;另一方面,模式生物的基因组计划有助于阐明它们之间的进化关系和基因组的进化模式。更为重要的是,分子系统学序列分析技术已经发展成为探索与整合基因组数据的强有力工具,从而在生命科学中发挥重要作用。事实上,分子系统学和基因组学的相互渗透正在形成一门崭新的交叉学科——系统发育基因组学。 为了奠定分子系统学研究中信息管理和数据分析工作的坚实基础,我们建立了分子系统发育分析平台。该平台为研究人员提供专业数据库服务和数据分析技术支持,以及相关的网络资源。 分子系统发育分析平台包括了3个专业数据库。第一个是DNA凭证标本数据库。该数据库中的记录包括了7项字段:英文科名、中文科名、物种拉丁名、采集人、采集号、采集地和采集时间。用户可以通过设定单个或多个字段的取值进行检索。截止2004年6月1日,该数据库共包括3491条标本记录。第二个是引物数据库。PCR引物是分子系统学实验的重要条件之一。该数据库中的记录包括3项字段:引物名称、序列内容和退火温度。用户可以通过设定单个或多个字段的取值进行检索。截止2004年6月1日,该数据库共包括170条用于扩增植物细胞核、叶绿体和线粒体基因组DNA序列的引物记录。第三个是生物计算数据库。该数据库为研究人员提供传输和保存序列分析数据和结果文件的服务。 为了确保数据库的安全性和使用性,我们开发了数据库的接口和检索工具,以及系统管理员和用户资格认证程序。通过前者,使用者可以进行数据的上传、下载、管理和检索等操作。而后者则是对不同使用者身份和权限进行设定。管理员的权限高于用户,主要负责本系统的日常维护和管理工作,以及对新增管理员和用户进行资格认证。 分析技术支持旨在帮助用户快速掌握常用的系统发育分析方法,进行有效的数据分析,从复杂的统计学算法和计算机程序中解放出来,将精力集中于计算结果的生物学解释。在该部分中,我们首先简要介绍了常用的分析方法,并且针对分子系统学中的不同问题提供了相应的解决方案。这些问题包括:系统发育重建、替代速率和分歧时间的估计、祖先分布区的重建、性状进化假说的检验、以及密码子水平适应性进化的检测。我们特别强调了似然比检验和贝叶斯推测作为方法论上的重要进展在分子系统学中所发挥的关键作用。本部分还包括大量常用的分子系统学程序或软件包及其快速使用说明和命令模块。下载安装之后,用户即可按照说明使用命令模块进行数据分析。 此外,该平台还提供了一些常用的网络资源地址,如生物信息中心、分子进化和系统发育实验室、专业期刊和相关数据库等。 最后还给出了4个应用实例,即针对特定分子系统学问题的解决方案和初步的分析结果。 第一个例子说明系统发育重建方法的应用。为了确定杨梅科的系统学位置,对6种DNA序列和叶绿体trnL-F区内的间隔性状进行了分析。单个分析表明这6种序列之间在系统学信息上存在显著差异。叶绿体基因组序列的合并分析强烈支持杨梅科和(木麻黄科,(桦木科,核果桦科))的姐妹群关系,而间隔性状的存在能够充分提高其分辨率和支持率。 第二个例子说明如何推测历史生物地理学过程。我们对壳斗目8科25属植物叶绿体基因组的trnL-F、matK、rbcL和atpB的合并序列进行了最大简约分析,得到唯一的最大简约树。基于该系统树和25属植物的地理分布数据,采用扩散-替代分析方法重建了系统树每个节点上的祖先分布区,推测了壳斗目的分布历史。结果表明,壳斗目的历史生物地理学过程由3次替代事件和20次扩散事件组成。其中最重要的替代事件是由于冈瓦纳大陆和劳亚大陆分离所导致的南青冈科及其姐妹群之间的分化。另外,在壳斗科和核心高等金缕梅类中多次发生从欧亚大陆到北美洲、甚至南美洲的平行扩散事件。 第三个例子说明如何估计分歧时间。我们仍然使用扩散-替代分析中所用的最大简约树作为分析的依据,并根据等级制似然比检验确定的最优替代模型对该系统树的支长进行了最大似然优化。似然比检验表明,该系统树不服从分子钟假说。我们以冈瓦纳大陆和劳亚大陆分离的地质事件和5个属的最早化石记录作为标定点,采用罚分似然法在没有分子钟的条件下估计了壳斗目的科间分歧时间。结果表明,绝大多数科间分歧事件都发生在白垩纪。 第四个例子说明如何检测密码子水平的适应性进化。分支间可变选择压力模型的似然比检验表明SARS冠状病毒的S基因在跨种传播过程中发生了正选择。
Resumo:
在模式植物金鱼草中的花对称性分子发育与遗传学研究揭示出相关调控基因在花对称性形成过程中的功能和表达式样及其相互作用机制,但被子植物中花对称性的繁杂多样远非模式植物的表达模式所能概括。因此,我们选择车前科和苦苣苔科中与金鱼草较近缘的典型类群地黄属和非洲紫罗兰属作为研究对象,针对它们在花对称性形成方面区别于金鱼草的不同式样,开展这些类群中花对称性主控基因CYCLOIDEA(CYC)类基因的进化发育生物学研究。该研究旨在探讨CYC 类基因的功能和表达式样的变化在进化上的内在联系。 地黄花对称性基因的进化发育研究结果显示,地黄中CYC 类基因RgCYC 的表达模式与CYC 基因在金鱼草中和McCYC 基因在Mohavea 中的表达模式存在明显的差异。首先, RgCYC 基因在近轴雄蕊预期发生位置表皮细胞下的强烈表达与地黄近轴雄蕊的缺失密切相关。转录因子中的氨基酸替代所导致蛋白质功能的改变使RgCYC 基因对细胞周期基因cyclin D3b 抑制作用的增强可能是地黄中近轴雄蕊原基发生过程被彻底阻断的主要原因。由此看来,CYC 类基因的作用不仅导致近轴花器官生长缓慢或退化,而且可能与自然类群中花近轴器官丢失的现象有关。其次,同McCYC 基因在Mohavea 中的表达模式相似,RgCYC 基因的表达也从近轴雄蕊延伸到了两侧雄蕊,但是并没有强烈地抑制两侧雄蕊的发育,仅仅使得两侧雄蕊短于远轴雄蕊从而在地黄中形成二强雄蕊。这一现象可能是由于RgCYC 基因的表达与McCYC 基因的表达在时间和空间上的差异所造成的,并显示地黄中二强雄蕊的形成机制和金鱼草完全不同。第三,RgCYC 基因在近轴花冠裂片的表达没有象CYC 在金鱼草中一样明显促进它们的生长。此外,近轴花冠裂片明显的自身对称性显示在地黄中RgCYC 基因在两侧对称性形成方面可能单独对近轴花器官进行调控。地黄中RgCYC 基因的表达模式反映了广义唇形目中从五数花到四数花进化过程的一种新的进化机制。 两侧对称花向次生辐射对称花的反演进化机制在花对称性进化发育研究中倍受关注。我们在苦苣苔科中选择非洲紫罗兰栽培品种作为研究材料,通过 mTAIL-PCR 分别在两侧对称花和辐射对称花的栽培品种中分离出了包含完整的 ORF 的CYC 类基因:SiCYC1A 和SiCYC1B。这两个基因的完整序列在DNA 水平的相似性为88%,均包含了完整的TCP domain, R domain 和 5’ 端区段。令人意外的是SiCYC1A 和SiCYC1B 这两个基因的DNA 序列在两侧和辐射对称花品种中均完全一致。根据对导致辐射对称花产生机制的比较分析,我们认为在这两个栽培品种中的SiCYC1A 和 SiCYC1B 基因可能存在着某一共同的调节因子对其进行调控。其可能途径是该调节因子同时调控SiCYC1A 和 SiCYC1B 基因,这一共同的调节因子的改变导致了SiCYC1A 和 SiCYC1B 基因部分或完全失去功能,从而使两侧对称花转变为辐射对称花。 崖白菜属的花部器官发生研究显示其花萼和花冠裂片的发生顺序与毛地黄族和婆婆纳族相似,花冠裂片早期生长的迟滞和花冠裂片折叠式样介于毛地黄族和婆婆纳族之间。但是,近轴雄蕊的发育缺失完全不同于毛地黄族中的其它类群。对地黄属和崖白菜属以及它们近缘类群的ITS 或trnL-F 序列所构建的系统树的分析显示,地黄属和崖白菜属呈姊妹群。然而,分子系统学研究结果并不支持传统系统学和个体发育研究对这两个属科级系统位置的认识。毛地黄属与婆婆纳属和车前属构成一个单系分支,而地黄属与崖白菜属则形成另外一个独立的分支,并与泡桐属与透骨草科所形成的分支首先聚在一支。因此,毛地黄族可能并不是一个单系类群,地黄属和崖白菜属的科级系统位置可能需要重新考虑。
Resumo:
稻族(Oryzeae)是禾本科中包含多种经济植物的重要类群,现有大约12个属,广布于全球的热带和温带地区。虽然有证据表明稻族是一个单系类群,但稻族的分类处理和属间系统发育关系以及稻族的生物地理学等方面仍存在许多悬而未决的问题。本研究利用了7个DNA片段,包括2个叶绿体基因片段(trnL和matK)、1个线粒体基因片段(nad1)和4个分布在不同染色体上的核基因片段(Adh1、Adh2、GPA1和Waxy)以及形态性状(87个)重建了稻族的系统发育关系,并在此基础上利用6个DNA片段(trnL、matK、nad1、Adh1、Adh2和GPA1)探讨了稻属基部类群的系统发育关系。同时在系统发育研究的基础上,进一步探讨了稻族物种间的分歧时间及生物地理学问题。主要结果如下: 1.稻族的系统学 多基因和形态性状的分析表明:1)稻族是单系类群可分为两个主要分支,相当于传统的两个亚族,第一个亚族(Zizaniinae)包括稻属﹑假稻属和Porteresia,而第二个亚族(Oryzinae)包括其余8个属。两性花是稻族的原始状态,而单性花多次起源,共起源了3次,因此单性花和两性花的区别不宜作为划分亚族的依据;2)Zizania 与分布在南美的单型属Rhynchoryza关系最近;3)一些单型属(Hydrochloa、Porteresia和Prosphytochloa)的确立得不到分子证据的支持,特别是Hydrochloa,形态证据分析的结果明确不支持建立该单型属;4)形态分析结果支持Zizania 4个种聚为一支,而东亚的一个种(Zizania latifolia)为该属基部类群。 2.稻属基部类群的系统发育关系 多基因系统发育分析表明:1)稻属是一个单系类群;2)所有数据都支持稻属10种染色体组类型各自为单系,包括稻属中最后确定的染色体组类型HK(Oryza schlechteri和Porteresia coarctata);3)F染色体组与HK和HJ中的H染色体组关系最近,类似于E染色体组与异源四倍体的CD染色体组中的D染色体组关系最近; 4)双亲遗传的核基因和母系遗传的线粒体和叶绿体基因的对比分析表明,HJ染色体组两个物种的母系来源是H,而HK染色体组两个物种母系来源是K。三个染色体组相比较,H分化较早,J次之,K分化最晚;5)在系统发育研究基础上,本研究认为稻属4个复合体的划分是可信的,原来未划分到任何一个复合体中的两个种O. brachyantha和O. schlechteri以及新近归入稻属的Oryza coarctata都应归入O. ridleyi复合体。 3.稻族各谱系的分化时间及其生物地理学意义 利用分子钟及其改进方法对稻族各谱系的起源和分化时间进行了估测,并在此基础上探讨了形成各类群地理分布式样的可能原因。结果表明,稻族在始新世(Eocene)晚期(3640万年前)起源于东南亚随后分为两大支。稻属基部类群G染色体组物种与稻属其他物种在1200万年前分开;稻属中A/B/C/E染色体组类群在700万年前开始分化。 在稻族的第一大支Oryzinae亚族中,稻属和假稻属1400万年前分开后,通过远程扩散及随后的漫长的历史过程形成了目前的分布格局。稻属从东南亚起源并逐渐扩散到非洲、澳洲及美洲;而假稻属则从非洲出发扩散到全球的热带和亚热带地区。这两个属的演化历史非常相似,都是全球广泛分布且起源时间较晚。 在稻族第二大支Zizaniinae亚族中,Zizania是稻族中唯一欧亚-北美间断分布属,与其分布在南美的姊妹群Rhynchoryza在2554万年前分开,这一支可能是先从南美扩散到东亚,然后再从东亚扩散到北美;Zizaniopsis和Luziola两属在南美洲和北美洲都有分布,其分歧时间为2180万年前,这两属具有类似的进化历史,即通过上新世(Pliocene)末期隆起的巴拿马陆桥形成现在的分布格局;Chikusichola与Potamophila/Prosphytochloa这一支从中新世(Miocene)早期(2270万年前)开始分化,由于Chikusichola(分布在东南亚)、Potamophila(澳大利亚)和Prosphytochloa(非洲)相距很远,这3个属的扩散必然与跨洋远距离扩散有关。
Resumo:
旌节花科是东亚特有科,仅有旌节花属1属。本文研究了该科植物的生活习性、外部形态、花粉形态和外壁超微结构以及花器官发生,并根据多个DNA区段的序列探讨了科的系统位置和属下关系。在此基础上,综合各方面的证据,对旌节花科进行了全面的分类学修订,完善了该科的分类系统。主要内容包括: 1、习性和外部形态学 结合室内标本和野外考察,对旌节花科植物的生活习性、叶、花序、花和果实各个性状的变异式样、变异幅度、变异规律及其相关性进行了深入研究,并讨论了它们的分类学价值。结果表明:叶片形状、叶缘齿、花序下的叶片是否宿存以及花序是否具花序梗等性状在种间变异非常大,单个性状对旌节花属属下分类意义不大;而叶片毛被、脉序和结构,花序长度,花的大小和颜色以及果实大小等性状通常较稳定,可作为旌节花属划分种和变种的重要依据。 2、花粉形态学和外壁超微结构 在透射电镜下研究了旌节花属5个代表种和1个外类群(Crossosoma californicum)的花粉外壁超微结构,并在扫描电镜下研究了外类群Crossosomataceae 1个代表种(Crossosoma californicum)的花粉形态学特征,结合前人的研究,探讨了上述性状的分类学意义。结果表明:旌节花属植物花粉形态的共同特征是:花粉粒球形或近球形,三孔沟;外壁具穴状纹饰,穴较细小;外壁内壁分层明显,容易区分(柳叶旌节花除外),覆盖层光滑,几无附属物,柱状层明显,穿孔较少,不形成半覆盖层。各种植物花粉外壁超微结构的特征在旌节花属两个组中较一致,但其差异可作为探讨属下种的分类和系统学关系的依据。此外,对旌节花科和Crossosomataceae花粉表面纹饰和外壁超微结构的研究结果提示:这两个科与省沽油科和山茶科厚皮香亚科有较近缘的关系,而不支持这两个科的姐妹群关系。 3、花器官发生 首次对旌节花属常绿组和落叶组共2个代表种的花器官发生进行了研究,结果表明:该科植物花为功能性单性花,雌雄异株,花发育过程长达10个月,其中2-3个月是冬季休眠期。在花发育早期,雄花和雌花的发育没有差异,花性别的分化发生在花发育后期,即每年春天花开前后的2-3天,雌花中雌蕊的子房开始膨大,柱头伸长,胚珠多数,能育,而雄蕊逐渐干瘪收缩直至最后花粉不育;此时雄花的雄蕊发育良好,花丝粗壮发达,花药饱满,花粉能育,而雌蕊发育逐渐停滞直至败育。花器官发生方式为向心式,发生顺序为:苞片—外轮萼片—内轮萼片—花瓣—外轮雄蕊—内轮雄蕊—雌蕊。花萼4枚,两轮,交互对生,花瓣和雄蕊均4枚一轮几乎同时发生,花瓣覆瓦状排列。旌节花属常绿组和落叶组植物的花器官发生发育过程没有差别。 4、基于多个DNA区段序列的系统发育分析 首次选取进化速率较快的5个DNA区段:核核糖体ITS区和叶绿体rps16, ndhF,trnL-F及trnS-G-G区段,对旌节花属分别代表常绿组和落叶组的10种2变种及外类群Crossosomataceae和省沽油科3种植物的相关序列进行测定,并将上述序列合并构建系统树。研究结果表明:旌节花科作为一个单系群得到很好的支持。旌节花属落叶组和常绿组的划分在基于ITS、叶绿体4个区段单独分析及联合分析得到的系统树中没有得到支持,表现在该联合分析得到的树的两个分支与该属植物的习性和外部形态特征无关,而与它们的地理分布密切相关:其中一支主要分布在东亚的偏北部,另一支主要分布在东亚的南部地区,常绿和落叶的种类则混合在这两支中。此外,分子序列分析的结果对该属植物的分类、系统关系、起源和该科的系统位置均有重要意义。系统树显示出分布于台湾的S. sigeyosii与分布于日本的早春旌节花聚成稳定的一支,说明前者与后者,而不是与西域旌节花关系密切。叶绿体基因树与核基因树存在冲突,表明该属经历过网状进化。推测变种披针叶旌节花与云南旌节花可能是杂交起源。根据叶绿体rbcL序列得出的系统树显示旌节花科与产北美的Crossosomataceae的姊妹群关系支持率低于50%。基于最大似然树,运用罚分似然法推算出这两个科分化时间为68.25 ± 10.36 MYA,这两者共同与省沽油科近缘。 5、分类学研究 综合上述研究结果,对旌节花属进行了分类学修订。属下不设立组;确认该属植物有6种6变种,其中中国特有种3个,变种3个。5种5变种被作为新异名,新组合3个,其中2个改级新组合。对西域旌节花、云南旌节花和滇缅旌节花等进行了模式指定。本文还给出了分种和变种检索表、各类群的形态学描述、地理分布图、标本引证和讨论等。
Resumo:
花楸属隶属于蔷薇科苹果亚科,全世界约有100种左右,主要分布在北半球的亚洲、欧洲和北美洲。广义的花楸属包括下述六个亚属,即Subg. Aria, Subg. Chamaemespilus, Subg. Micromeles, Subg. Torminalis, Subg. Cormus, Subg. Sorbus。由于缺乏野外工作和标本不够丰富等原因,部分亚属的分类处理尚不能令人满意。同时,该属的范围及其属下部分类群的系统位置存在一定的争议。本文对广义花楸属的属下类群进行了研究,通过分支分析和表征分析以及分子系统学两方面的研究,对该属的属下类群的系统位置进行了探讨。 1、分支分析和表征分析 选取了广义花楸属(Sorbus L.)属下6个亚属的34种植物作为研究对象,并以Pyrus, Crataegus, Photinia, Malus和Cotoneaster作为外类群来研究花楸属属下类群的分类关系,对该属典型的30个形态性状数据进行编码,进行了分支分析和表征分析。结果表明,广义花楸属是一个非单系类群,外类群完全镶嵌于其中。广义花楸属属下的6个亚属各自也不能形成单系,只有花楸亚属(Subg. Sorbus)形成不严格的单系。因此,我们初步认为,花楸属应该仅包含复叶类群(Subg. Sorbus),或者还会有Subg. Cormus。由于其余的4个亚属尚不能形成规则的单系或聚类,因此进一步的研究宜采用分类群的更多性状或运用分子系统学的途径。 2、分子系统学 通过对花楸属23个种类的两个DNA片段:核nrDNA的ITS和叶绿体cpDNA的trnL-F进行简约分析,构建了广义花楸属5个亚属及其与近缘属的系统发育树。结果显示,由于外类群大多镶嵌于广义花楸属中,故花楸属不能形成一个单系。其中单叶类群Subg. Aria聚类较明显,并且得到了很高的支持率,而且该亚属与外类群Crataegus和Cotoneaster的关系要比它与其它亚属的关系更近,至于其是否是独立的属还有待进一步的研究。该属中的复叶类群Subg. Sorbus在图中并不能形成严格的单系,其分类位置值得重新考虑。
Resumo:
云杉属植物是非常重要的森林树种,广泛分布于北半球的寒温带、温带高山和亚高山地带。该属为松科中仅次于松属和冷杉属的第三大属,约有 28-56 种。自云杉属建立以来,其属于松科没有任何疑议。然而,由于云杉属物种间频繁杂交、形态趋同和取样困难,尽管已经有基于形态学、细胞学、化学成份、叶绿体 DNA RFLP 等方面的研究,该属的属下分类仍然存在诸多争议。本文利用父系遗传的叶绿体基因和母系遗传的线粒体基因序列重建了云杉属的系统发育关系,探讨了云杉属生物地理格局的形成过程。在此基础上,我们研究了低拷贝核 CAD 基因在云杉属的进化式样。另外,我们还对裸子植物线粒体基因 rps3 的内含子分布和进化进行了初步研究。 1. 云杉属的系统发育和生物地理学研究 我们选择了 Farjon (1990) 确定的 34 个种中的 33 种 (另一个种在 Flora of China 未得到承认),共 103 个个体,对这些个体的叶绿体 DNA 片段 trnC-trnD 和 trnT-trnF 以及线粒体基因 nad5 的第一个内含子进行了序列测定。在两个叶绿体基因片段联合分析构建的系统发育树上,北美西部的 P. breweriana 和 P. sitchensis 位于最基部。其余的物种分为三支:第一支由北美的两个物种组成;第二支包括分布于喜马拉雅-横断山区及其周围地区的八个种、台湾的 P. morrisonicola、西亚的 P. orientalis、日本的两个种及北美的 P. chihuahuana;第三支中,北美的 P. pungens 位于基部,亚洲东北部的种 (除 P. maximowiczii 和 P. torano 外)、P. retroflexa 和欧洲的 P. abies 构成一个单系群,并与北美的 P. mariana 和 P. rubens 及来自巴尔干半岛的 P. omorika 形成姐妹支。所有样品的 nad5 第一个内含子序列可分为 A、B、C、D 和 E 5 种单倍型,北美的物种拥有前 4 种,而且 A、B 和 C 单倍型为北美所特有;欧亚的物种仅含 D 和 E 两种单倍型。 上述结果结合 MacClade 和 DIVA 分析及化石证据,我们推断云杉属起源于北美,至少两次经白令陆桥扩散至亚洲,然后从亚洲扩散至欧洲。亚洲东北部的绝大多数物种和欧洲云杉 P. abies 的种间遗传变异非常低,而且线粒体单倍型均为 D,可能来源于一次近期的辐射分化。云杉属的现代分布中心之一喜马拉雅-横断山区的物种可能不是一次起源,日本的物种同样如此,这可能与第三纪气候变冷和第四纪冰川导致的物种迁移有关。此外,我们发现目前用于云杉属分类的一些形态性状(如叶扁平、菱形等)在系统发育树上位于不同的位置,说明这些性状可能不是一次起源或是祖征在不同支系中的保留,用于云杉属的系统划分须慎重。 2. 云杉属 CAD 基因的进化研究 裸子植物的多倍体特别少,且以基因组庞大而著称。被子植物中的很多单拷贝基因在裸子植物中以低拷贝或多拷贝基因家族的方式存在。CAD 基因在木质素单体合成的最后一步起作用,在松属中只发现了一种 CAD 基因拷贝,在欧洲云杉中却发现了三种拷贝,而且 Southern 杂交和子代分离鉴定结果表明这三种拷贝至少位于两个位点上。然而,对云杉属三个物种 (包括欧洲云杉) 构建的遗传图谱却都只发现了一个 CAD 基因位点。由于云杉属 CAD 基因的数目和分布存在很大争议,我们根据构建的叶绿体基因树,选择了不同支上的 20 个物种、29 个样品研究该基因的进化式样。结果表明:云杉属不同物种中 CAD 基因的拷贝数为 1-4 种,多数为 2-3 种。系统发育分析发现有些物种的所有 CAD 基因拷贝聚成一支,另有一些物种的 CAD 基因拷贝位于不同位置。此外,我们对 GenBank 中云杉属三个物种 CAD 基因的 EST 序列分析后发现:EST 序列的差异主要发生在 3’-UTR 区,表现为序列长短的不同,这有可能是进行体外反转录时引物结合于不同的位置所致。因此,结合前人研究(包括遗传图谱分析),我们推测 CAD 基因在云杉属内发生了多次重复,重复拷贝很可能呈串联排列。 3. 裸子植物线粒体基因 rps3 的进化研究 线粒体基因内含子的获得/丢失已经被广泛应用于系统发育研究。rps3 为分布最广的线粒体核糖体蛋白基因,一般含一个内含子,前人研究显示其在裸子植物中多了一个第二类内含子 rps3i2,并将这个内含子作为区分裸子植物和其它植物类群的标志之一。然而,该研究只选择了苏铁和银杏作为裸子植物的代表,取样代表性不足。在本研究中,我们对裸子植物每个科至少选择一个物种作为代表,通过 DNA 序列和部分物种的 RT-PCR 分析,探讨 rps3 基因在裸子植物中的进化。结果表明 rps3 基因内含子的分布与裸子植物系统发育关系相吻合:Conifer II、松科的落叶松属和黄杉属及百岁兰科不仅不含 rps3i2,而且丢失了第一个内含子;金钱松属缺失第二个内含子。我们推断在 Conifer II 的祖先和百岁兰科中分别一次性丢失了两个内含子;在松科中则发生了两次单独的丢失事件,一次是在落叶松属和黄杉属的祖先中丢失了两个内含子,一次是在金钱松属中丢失了第二个内含子。另外,在 Ephedra 中没有扩增出 rps3 基因,Gnetum 中具有第二个内含子,倪藤科的 rps3i2 似乎支持松科与倪藤纲的关系更近。对 rps3i2 的进一步分析发现,其序列结构与松科的系统发育关系非常吻合。根据上述结果和 mRNA 编辑位点分析,我们认为 Conifer II等类群中的两个rps3内含子丢失可能是反转录酶介导的 cDNA 反转录造成的。Psuedolarix 的内含子丢失也可能为相同机制,但因缺乏材料而未能进一步研究。
Resumo:
中国的苦苣苔科-长蒴苣苔族存在两个古老又难以界定的大属:唇柱苣苔属Chirita和长蒴苣苔属Didymocarpus。唇柱苣苔属至少有140种,其中75%以上的种分布在中国南部。尽管Wood和王文采(中国种)已经作出较为全面的修订,但唇柱苣苔属的界定以及属下再划分仍然存在争议。传统分类一直认为唇柱苣苔属非单系类群,尤其与长蒴苣苔属、小花苣苔属、文采苣苔属以及报春苣苔属等近缘属之间的关系难以确定,还需进一步研究。长蒴苣苔属已经被拆分为三个不同的属,其中的狭义长蒴苣苔在我国有20多种。针对以上问题,本文通过大量的标本研究、野外考察以及分子系统学研究,得出了一些初步的结果。 形态学 通过大量的标本观察及野外考察,发现唇柱苣苔属及其近缘类群营养性状变异非常复杂。然而,营养体变异受环境饰变大,不适合作为划分组和属等较高级分类单元的主要依据,是区分近缘种的主要分类依据。在生殖器官中,一些性状,如子房和蒴果形状和大小,在唇柱苣苔属和其近缘属中存在大量的过渡类型,不宜将单独或2-3个性状作为主要分类依据。同时笔者发现两个新种,即长萼唇柱苣苔(C. longicalyx J. M. Li & Y. Z. Wang)和匍匐唇柱苣苔(C. prostrata J. M. Li & Y. Z. Wang)。匍匐唇柱苣苔属于钩序唇柱苣苔组,系多年生植物,致使我们国家分布的钩序唇柱苣苔组扩大为两种。它的特殊习性以及极其有限的分布区表明,它是一个在不利的生境下偶尔幸存的残遗种。 2.分子系统学 首先通过对两个DNA片段ITS和trnL-F数据以及它们的联合数据进行最简约分析和贝叶斯分析,并结合形态特征演化来研究唇柱苣苔属唇柱苣苔组和小花苣苔属系统发育关系。结果表明,小花苣苔属和唇柱苣苔组(唇柱苣苔属)Chirita sect. Gibbosaccus构成一个单系群,强烈支持小花苣苔属归并到唇柱苣苔组(唇柱苣苔属)中,而且二者形态性状极其相似。上述事实说明唇柱苣苔组(唇柱苣苔属)和小花苣苔属具有很近的亲缘关系,而与麻叶唇柱苣苔组Chirita sect. Chirita关系较远。研究一些关键地区植物的物种形成,将提高对这些地区植物区系发生与发展的认识,喀斯特地区就是这样一个非常独特与关键的地区。特产于这种干湿交替、温度变化显著的特殊生境里的的类群,如唇柱苣苔组和小花苣苔属,存在着非常近的系统发育关系。最后笔者建议把小花苣苔属置于唇柱苣苔属唇柱苣苔组里,而不是将该属单立出来。 在上述研究基础上,本研究进一步选择唇柱苣苔属的其他近缘属,通过对两个DNA片段ITS和trnL-F数据以及联合数据进行最简约分析,旨在揭示在唇柱苣苔属内的系统发育及其和周边近缘属系统发育关系。该研究结果表明狭义长蒴苣苔属、朱红苣苔属、报春苣苔属、文采苣苔属以及小花苣苔属都置入唇柱苣苔属内。其中,报春苣苔属、文采苣苔属以及小花苣苔属和唇柱苣苔组具有相似的柱头,在系统树上,也构成一个单系分支。虽然许多学者认为柱头形状是很重要的分类性状,也是唯一用来界定唇柱苣苔属的,但是非常不可靠的,因而唇柱苣苔属至少分成两个属。 文采苣苔属和小花苣苔属无论从分子上还是从形态上都得不到证明是单系类群,应该归并到唇柱苣苔属中;而报春苣苔属很可能是最近从唇柱苣苔组里分化出来的类群。 东南长蒴苣苔和朱红苣苔属植物形态十分相似,除了营养体差别不大外,他们还具伸出花筒外的柱头和小而尖的花冠裂片等共同特征,分子树上也组成一个单系,为东南长蒴苣苔归并到朱红苣苔属提供了强有力的分子证据。 在狭义长蒴苣苔属Didymocarpus s. str.两个组中,Didymocarpus sect. Elati的一个种D. citrinus与长蒴苣苔组Didymocarpus sect. Didymocarpus构成姐妹群关系。二组植物构成一个单系分支又与圆唇苣苔属Gyrocheilos构成姐妹群关系。因此,虽然我们的数据支持圆唇苣苔属与长蒴苣苔属近缘,但是不支持圆唇苣苔属作为一个亚组放在长蒴苣苔里。
Resumo:
苔藓是高等植物(有胚植物或陆地植物)中最原始的一类,但种类却丰富多样,其形态和生长环境的多样化程度高于蕨类和裸子植物,且对极端环境的忍耐力更强,分布范围也更广。“特有”是一个地理概念,它是相对广布而言,当一个类群的分布范围有一定的限制时即为特有现象。“东亚特有”是指分布范围主要局限于中国,朝鲜,日本和蒙古等,向北可及俄罗斯远东地区,少数可分布至中国南部相邻地区的植物类群。东亚地区主要以温带植物区系为主,但也包含一些热带植物区系成分,还因为第四纪以来受冰川活动影响较少,因此植物种类非常丰富。东亚地区也是苔藓植物的多样性中心之一,这里有较多的特有成分。在我国总共分布有苔藓植物东亚特有属35属,其中苔类5属,藓类30属。长期以来,特有成分始终引起人们的极大关注,不仅是因为其在植物地理学上的重要性,还因为特有类群中包含了孓遗类群,往往系统位置比较关键,此外,大部分特有类群对人为干扰比较敏感,对其保护就愈加重要,因为它在这个地区的消失就意味着一个类群的灭绝。 我国对苔藓植物东亚特有类群已有较好的认识,在前人知识积累的基础之上,我们期望通过分子系统学的方法,开展对东亚特有苔藓属的研究,逐步揭开特有属植物的神秘面纱,最终在系统树上找到它们各自应该属于自己的位置。 在本次研究中,我们总共得到十一个苔藓植物东亚特有属的新鲜材料。在实验室中我们对这十一个特有属叶绿体和核的六个基因(叶绿体atpB, rbcL, cp-SSU, cp-LSU 和核18S,26S rDNA)进行了测序,并在此基础之上,构建了来自苔藓植物106个属上述六个基因的联合矩阵,并对它们进行了系统学分析。本文所选十一个特有属中除三个苔类属和一个线齿藓类的属之外,其它七个特有属都属于侧蒴藓类。根据近几年的研究结果,侧蒴藓类中灰藓目被认为是起源自一次快速辐射演化,灰藓目各科之间的关系以及各科的范围都很难确定。即便本实验测序一万多bp,这一支之内的关系仍不能解决。 在以上结果的基础上,本文对线齿藓类的树发藓属(Microdendron)进行了较为详细的研究,我们用最大简约法分析了金发藓目15属,33种的18S, rbcL和trnL-F序列的联合矩阵。对树发藓属的微形态进行了电镜扫描。形态和分子数据的分析结果表明,这个特有属在属级水平是不成立的,它仅是小金发藓属的一个种。此结果支持将这个东亚特有属降为种的等级。此外,本文还对囊绒苔属(Trichocoleopsis)和新绒苔属(Neotrichocolea)的系统位置做了比较详细的研究。我们分别分析了一个苔类植物57属的四基因(cp-SSU, cp-LSU, atpB and rbcL)矩阵和一个苔类植物24属的九基因(cp-SSU, cp-LSU, atpB, psbA, rps4, rbcL, 18S, 26S and nad5)联合矩阵,结果显示囊绒苔属和新绒苔属互为姐妹群关系,而毛叶苔属(Ptilidium)又是它们二者的姐妹群。研究结果支持了囊绒苔属和新绒苔属组成新绒苔科(Neotrichocoleaceae),而不同于前人的观点:将上述两属放置于毛叶苔科(Ptilidiaceae)、绒苔科(Trichocoleaceae)或多囊苔科(Lepidolaenaceae)。另外值得注意的是这两个特有属和毛叶苔属组成的一支位于叶苔类(Leafy liverwort)中“Leafy I”和“Leafy II”两大支之间,但这一支确切的系统位置没有解决,仍有待于进一步研究。 除此之外,本文还利用GenBank中的数据对东亚特有属日鳞苔属(Nipponolejeunea)和耳坠苔属(Ascidiota)(未获得实验材料)进行了初步的系统学分析。结果表明传统上放在细鳞苔科的日鳞苔属与毛耳苔科的毛耳苔属(Jubula)为姐妹群关系,建议将日鳞苔属置于毛耳苔科;耳坠苔属是光萼苔科的成员,属的分类等级是合理的。 最后本文利用罚分似然法,选取多个化石作为标定点,对来自苔藓植物主要类群及其它陆地植物共115个类群5个基因(atpB, rbcL, cp-SSU, cp-LSU, 18S)的矩阵进行了分子钟的分析,初步估算11个东亚特有属的分化时间。