997 resultados para tree island
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.
Resumo:
Pertenece a un amplio programa infantil de lectura que abarca distintos niveles de edad y, por tanto, de conocimientos. Se abordan las necesidades de lectura en los niños y la amplia variedad de habilidades que necesitan adquirir para su aprendizaje y, se destaca, también, la importancia de la narración en las historias. Aparecen dos nuevos personajes, Nadim y Anneena, que junto con Biff, Chip y Kipper colaboran para evitar la contaminación de la isla verde.
Resumo:
The importance of dispersal for the maintenance of biodiversity, while long-recognized, has remained unresolved. We used molecular markers to measure effective dispersal in a natural population of the vertebrate-dispersed Neotropical tree, Simarouba amara (Simaroubaceae) by comparing the distances between maternal parents and their offspring and comparing gene movement via seed and pollen in the 50 ha plot of the Barro Colorado Island forest, Central Panama. In all cases (parent-pair, mother-offspring, father-offspring, sib-sib) distances between related pairs were significantly greater than distances to nearest possible neighbours within each category. Long-distance seedling establishment was frequent: 74% of assigned seedlings established > 100 m from the maternal parent [mean = 392 +/- 234.6 m (SD), range = 9.3-1000.5 m] and pollen-mediated gene flow was comparable to that of seed [mean = 345.0 +/- 157.7 m (SD), range 57.6-739.7 m]. For S. amara we found approximately a 10-fold difference between distances estimated by inverse modelling and mean seedling recruitment distances (39 m vs. 392 m). Our findings have important implications for future studies in forest demography and regeneration, with most seedlings establishing at distances far exceeding those demonstrated by negative density-dependent effects.
Resumo:
P>Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a collection of deletions in cryptic prophages and EHEC O157 O-islands to screen for novel regulators of T3S. Using this approach we have identified a family of homologous AraC-like regulators that indirectly repress T3S. These prophage-encoded secretion regulator genes (psr) are found exclusively on prophages and are associated with effector loci and the T3S activating Pch family of regulators. Transcriptional profiling, mutagenesis and DNA binding studies were used to show that these regulators usurp the conserved GAD acid stress resistance system to regulate T3S by increasing the expression of GadE (YhiE) and YhiF and that this regulation follows attachment to bovine epithelial cells. We further demonstrate that PsrA and effectors encoded within cryptic prophage CP933-N are required for persistence in a ruminant model of colonization.
Resumo:
Seychelles supports around three million nesting pairs of sooty terns. However, there have been recent declines and the colonies continue to face ongoing threats from habitat change and excessive commercial harvesting of their eggs, as well as potential threats by commercial fishing and climate change. A possible method to counter these threats is to re-establish breeding colonies on islands from which they have disappeared. An attempt was made to attract birds to a previously occupied island through habitat management, decoy birds and playback of recorded sooty tern calls. Habitat preparation involved predator eradication and tree removal to provide open ground with bare sandy areas and low herb vegetation. Overflying birds were attracted by broadcast calls, with some circling over and landing among the decoys. Large three-dimensional plastic models were superior to other models presented. This study demonstrated that large numbers of birds can be attracted by these means and that the birds then undertook behaviour associated with breeding, including egg laying by a few birds. However, after five seasons a breeding colony has not yet been established; one possible cause is the emergence of unexpected egg predators, common moorhen Gallinula chloropus and common myna Acridotheres tristis.
Resumo:
The aim of this thesis was to evaluate historical change of the landscape of Madeira Island and to assess spatial and temporal vegetation dynamics. In current research diverse “retrospective techniques”, such as landscape repeat photography, dendrochronology, and research of historical records were used. These, combined with vegetation relevés, aimed to gather information about landscape change, disturbance history, and vegetation successional patterns. It was found that landscape change, throughout 125 years, was higher in the last five decades manly driven by farming abandonment, building growth and exotic vegetation coverage increase. Pristine vegetation was greatly destroyed since early settlement and by the end of the nineteenth century native vegetation was highly devastated due to recurrent antropogenic disturbances. These actions also helped to block plant succession and to modify floristical assemblages, affecting as well as species richness. In places with less hemeroby, although significant growth of vegetation of lower seral stages was detected, the vegetation of most mature stages headed towards unbalance between recovery and loss, being also very vulnerable to exotic species encroachment. Recovery by native vegetation also occurred in areas formerly occupied by exotic plants and agriculture but it was almost negligible. Vegetation recovery followed the successional model currently proposed, attesting the model itself. Yet, succession was slower than espected, due to lack of favourable conditions and to recurrent disturbances. Probable tempus of each seral stage was obtained by growth rates of woody taxa estimated through dendrochronology. The exotic trees which were the dominant trees in the past (Castanea sativa and Pinus pinaster) almost vanished. Eucalyptus globulus, the current main tree of the exotic forest is being replaced by other cover types as Acacia mearnsii. The latter, along with Arundo donax, Cytisus scoparius and Pittosporum undulatum are currently the exotic species with higher invasive behaviour. However, many other exotic species have also proved to be highly pervasive and came together with the ones referred above to prevent native vegetation regeneration, to diminish biological diversity, and to block early successional phases delaying native forest recovery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mammals has been pointed out to be the main nest predators in islands, but recent studies has shown that tree snakes are also important nest predator in tropical forests. Here we present information on the density tegu lizards Tupinambis merianae and its role as nest predator at Anchieta Island, Ubatuba, in southeastern Brazil. The mean density of tegu lizards wets estimated to be 83 individuals/km2, which is 1.83 times lower than other well-known population (Fernando de Noronha Archipelago). In the dense rainforest, the density was estimated in 20 individuas/ km2, and in the open rainforest, 109 ind/km2. The high density of this lizard may have serious implications for nest predation. We found that 36% of artificial plasticine eggs were "preyed upon" by tegu lizards. Therefore, it is paramount to manage the tegu population on Anchieta Island to assure the survival of ground nesting birds in islands and possibly in forest fragments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
The soils on four lithologies (basaltic conglomerates, Bohio; Andesite; volcanoclastic sediments with basaltic agglomerates, Caimito volcanic; foraminiferal limestone, Caimito marine) on Barro Colorado Island (BCI) have high exchangeable Ca concentrations and cation-exchange capacities (CEC) compared to other tropical soils on similar parent material. In the 0–10 cm layer of 24 mineral soils, pH values ranged from 5.7 (Caimito volcanic and Andesite) to 6.5 (Caimito marine), concentrations of exchangeable Ca from 134 mmolc kg− 1 (Caimito volcanic) to 585 mmolc kg− 1 (Caimito marine), and cation exchange capacities from 317 mmolc kg− 1 (Caimito volcanic) to 933 mmolc kg− 1 (Caimito marine). X-ray diffractometry of the fraction < 2 μm revealed that smectites dominated the clay mineral assemblage in soil except on Caimito volcanic, where kaolinite was the dominant clay mineral. Exchangeable Ca concentrations decreased with increasing soil depth except on Caimito marine. The weathering indices Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Weathering Index of Parker (WIP) determined for five soils on all geological formations, suggested that in contrast to expectation the topsoil (0–10 cm) appeared to be the least and the subsoil (50–70 cm) and saprolite (isomorphically weathered rock in the soil matrix) the most weathered. Additionally, the weathering indices indicated depletion of base cations and enrichment of Al-(hydr)oxides throughout the soil profile. Tree species did not have an effect on soil properties. Impeded leaching and the related occurrence of overland flow seem to be important in determining clay mineralogy. Our results suggest that (i) edaphic conditions favor the formation of smectites on most lithologies resulting in high CEC and thus high retention capacity for Ca and (ii) that there is an external source such as dust or sea spray deposition supplying Ca to the soils.