890 resultados para traduzione, traduzione teatrale, larry kramer, the normal heart, aids, inglese, lgbtq, teatro
Resumo:
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2) activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2) activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2) activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24)); CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15)); SCARB1 on chromosome 12 (p = 1x10(-8)) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8)). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2) mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2) activity and mass.
Resumo:
BACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.
Resumo:
Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.
Resumo:
Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alpha B -crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alpha B-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alpha B -crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alpha B -crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alpha B -crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.
Resumo:
This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm proposed by us. This algorithm can converge to feature basis vectors, which behave in the locality and orientation in spatial and frequency domain. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. This denoising method is evaluated by values of the normalized signal to noise rate (SNR). Experimental results show that the NNSC shrinkage approach is indeed efficient and effective in denoising. Otherwise, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulation results show that our method outperforms the three kinds of denoising approaches mentioned above.
Resumo:
Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexaeri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz(pHS2). Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.
Resumo:
A 12 amino acid sequence from the adenovirus 12 E1B protein is homologous at the protein level with a similar 12-mer derived from the wheat protein A-gliadin. It has been suggested that exposure to Ad 12 could sensitise individuals to gliadins with resultant gluten sensitive enteropathy. In this study, the polymerase chain reaction (PCR) was used to analyse duodenal biopsy tissue from patients with coeliac disease for the presence of Ad 12. The sensitivity of the assay system was at least 1 in 10(5) cells and specificity was confirmed both by probing with an internal oligonucleotide and by direct sequencing. Ad 12 sequences were detected in three of 17 patients with adult coeliac disease and in five of 16 adult controls with normal duodenal biopsies. Since exposure to the virus would be predicted to occur in infancy we also studied patients with childhood coeliac disease diagnosed at less than 1 year of age. Ad 12 was positive in three of 10 childhood coeliac patients and one of seven controls. In addition, we studied a cohort of patients who presented with a diarrhoeal illness and associated anti alpha gliadin antibodies in 1983. These patients had duodenal biopsies performed at this time. One of three patients with abnormal histology had detectable Ad 12 while two of 14 with normal findings were positive for Ad 12. Finally, the potential oncogenic nature of Ad 12 prompted examination of a group of patients with intestinal tumours. Ad 12 DNA was, however, in only two of 19 tumour samples tested. These data indicate that Ad 12 can be successfully detected using PCR on paraffin embedded tissue. Furthermore, Ad 12 was detected at a relatively high level in normal duodenum. The results do not, however, support the hypothesis that prior exposure to Ad 12 is implicated in the pathogenesis of coeliac disease.