990 resultados para tracer


Relevância:

20.00% 20.00%

Publicador:

Resumo:


Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information Visualization is gradually emerging to assist the representation and comprehension of large datasets about Higher Education Institutions, making the data more easily understood. The importance of gaining insights and knowledge regarding higher education institutions is little disputed. Within this knowledge, the emerging and urging area in need of a systematic understanding is the use of communication technologies, area that is having a transformative impact on educational practices worldwide. This study focused on the need to visually represent a dataset about how Portuguese Public Higher Education Institutions are using Communication Technologies as a support to teaching and learning processes. Project TRACER identified this need, regarding the Portuguese public higher education context, and carried out a national data collection. This study was developed within project TRACER, and worked with the dataset collected in order to conceptualize an information visualization tool U-TRACER®. The main goals of this study related to: conceptualization of the information visualization tool U-TRACER®, to represent the data collected by project TRACER; understand higher education decision makers perception of usefulness regarding the tool. The goals allowed us to contextualize the phenomenon of information visualization tools regarding higher education data, realizing the existing trends. The research undertaken was of qualitative nature, and followed the method of case study with four moments of data collection.The first moment regarded the conceptualization of the U-TRACER®, with two focus group sessions with Higher Education professionals, with the aim of defining the interaction features the U-TRACER® should offer. The second data collection moment involved the proposal of the graphical displays that would represent the dataset, which reading effectiveness was tested by end-users. The third moment involved the development of a usability test to the UTRACER ® performed by higher education professionals and which resulted in the proposal of improvements to the final prototype of the tool. The fourth moment of data collection involved conducting exploratory, semi-structured interviews, to the institutional decision makers regarding their perceived usefulness of the U-TRACER®. We consider that the results of this study contribute towards two moments of reflection. The challenges of involving end-users in the conceptualization of an information visualization tool; the relevance of effective visual displays for an effective communication of the data and information. The second relates to the reflection about how the higher education decision makers, stakeholders of the U-TRACER® tool, perceive usefulness of the tool, both for communicating their institutions data and for benchmarking exercises, as well as a support for decision processes. Also to reflect on the main concerns about opening up data about higher education institutions in a global market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of trace gas correlations in the lowermost stratosphere. In‐situ aircraft measurements of CO, N2O, NOy and O3, obtained during the STREAM 1997 winter campaign, have been used to investigate the role of cross‐tropopause mass exchange on tracertracer relations. At altitudes several kilometers above the local tropopause, undisturbed stratospheric air was found with NOy/NOy * ratios close to unity, NOy/O3 about 0.003–0.006 and CO mixing ratios as low as 20 ppbv (NOy * is a proxy for total reactive nitrogen derived from NOy–N2O relations measured in the stratosphere). Mixing of tropospheric air into the lowermost stratosphere has been identified by enhanced ratios of NOy/NOy * and NOy/O3, and from scatter plots of CO versus O3. The enhanced NOy/O3 ratio in the lowermost stratospheric mixing zone points to a reduced efficiency of O3 formation from aircraft NOx emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of tracers in the ocean is often taken as an indication of the ventilation pathways for oceanic water masses. It has been suggested that under anthropogenic forcing heat will be taken up into the interior of the ocean along isopycnal ventilation pathways. This notion is investigated by examining distributions of potential temperature and a passive anomaly temperature tracer in a coupled climate experiment where CO2 is increased at a rate of 2% per year. We show that interior temperature changes cannot be explained solely by passive tracer transport along isopycnals. Heat uptake is strongly affected by changes in circulation and has a substantial diapycnal component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent’s Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.