974 resultados para total uncertainty measurement
Resumo:
The goal of this thesis was an experimental test of an effective theory of strong interactions at low energy, called Chiral Perturbation Theory (ChPT). Weak decays of kaon mesons provide such a test. In particular, K± → π±γγ decays are interesting because there is no tree-level O(p2) contribution in ChPT, and the leading contributions start at O(p4). At this order, these decays include one undetermined coupling constant, ĉ. Both the branching ratio and the spectrum shape of K± → π±γγ decays are sensitive to this parameter. O(p6) contributions to K± → π±γγ ChPT predict a 30-40% increase in the branching ratio. From the measurement of the branching ratio and spectrum shape of K± → π±γγ decays, it is possible to determine a model dependent value of ĉ and also to examine whether the O(p6) corrections are necessary and enough to explain the rate.About 40% of the data collected in the year 2003 by the NA48/2 experiment have been analyzed and 908 K± → π±γγ candidates with about 8% background contamination have been selected in the region with z = mγγ2/mK2 ≥ 0.2. Using 5,750,121 selected K± → π±π0 decays as normalization channel, a model independent differential branching ratio of K± → π±γγ has been measured to be:BR(K± → π±γγ, z ≥ 0.2) = (1.018 ± 0.038stat ± 0.039syst ± 0.004ext) ∙10-6. From the fit to the O(p6) ChPT prediction of the measured branching ratio and the shape of the z-spectrum, a value of ĉ = 1.54 ± 0.15stat ± 0.18syst has been extracted. Using the measured ĉ value and the O(p6) ChPT prediction, the branching ratio for z =mγγ2/mK2 <0.2 was computed and added to the measured result. The value obtained for the total branching ratio is:BR(K± → π±γγ) = (1.055 ± 0.038stat ± 0.039syst ± 0.004ext + 0.003ĉ -0.002ĉ) ∙10-6, where the last error reflects the uncertainty on ĉ.The branching ratio result presented here agrees with previous experimental results, improving the precision of the measurement by at least a factor of five. The precision on the ĉ measurement has been improved by approximately a factor of three. A slight disagreement with the O(p6) ChPT branching ratio prediction as a function of ĉ has been observed. This mightrnbe due to the possible existence of non-negligible terms not yet included in the theory. Within the scope of this thesis, η-η' mixing effects in O(p4) ChPT have also been measured.
Resumo:
One of the most precisely measured quantities in particle physics is the magnetic moment of the muon, which describes its coupling to an external magnetic field. It is expressed in form of the anomalous magnetic moment of the muon a_mu=(g_mu-2)/2 and has been determined experimentally with a precision of 0.5 parts per million. The current direct measurement and the theoretical prediction of the standard model differ by more than 3.5 standard deviations. Concerning theory, the contribution of the QED and weak interaction to a_mu can be calculated with very high precision in a perturbative approach.rnAt low energies, however, perturbation theory cannot be used to determine the hadronic contribution a^had_mu. On the other hand, a^had_mu may be derived via a dispersion relation from the sum of measured cross sections of exclusive hadronic reactions. Decreasing the experimental uncertainty on these hadronic cross sections is of utmost importance for an improved standard model prediction of a_mu.rnrnIn addition to traditional energy scan experiments, the method of Initial State Radiation (ISR) is used to measure hadronic cross sections. This approach allows experiments at colliders running at a fixed centre-of-mass energy to access smaller effective energies by studying events which contain a high-energetic photon emitted from the initial electron or positron. Using the technique of ISR, the energy range from threshold up to 4.5GeV can be accessed at Babar.rnrnThe cross section e+e- -> pi+pi- contributes with approximately 70% to the hadronic part of the anomalous magnetic moment of the muon a_mu^had. This important channel has been measured with a precision of better than 1%. Therefore, the leading contribution to the uncertainty of a_mu^had at present stems from the invariant mass region between 1GeV and 2GeV. In this energy range, the channels e+e- -> pi+pi-pi+pi- and e+e- -> pi+pi-pi0pi0 dominate the inclusive hadronic cross section. The measurement of the process e+e- -> pi+pi-pi+pi- will be presented in this thesis. This channel has been previously measured by Babar based on 25% of the total dataset. The new analysis includes a more detailed study of the background contamination from other ISR and non-radiative background reactions. In addition, sophisticated studies of the track reconstruction as well as the photon efficiency difference between the data and the simulation of the Babar detector are performed. With these auxiliary studies, a reduction of the systematic uncertainty from 5.0% to 2.4% in the peak region was achieved.rnrnThe pi+pi-pi+pi- final state has a rich internal structure. Hints are seen for the intermediate states rho(770)^0 f_2(1270), rho(770)^0 f_0(980), as well as a_1(1260)pi. In addition, the branching ratios BR(jpsi -> pi+pi-pi+pi-) and BR(psitwos -> jpsi pi+pi-) are extracted.rn
Resumo:
In hadronischen Kollisionen entstehen bei einem Großteil der Ereignisse mit einem hohen Impulsübertrag Paare aus hochenergetischen Jets. Deren Produktion und Eigenschaften können mit hoher Genauigkeit durch die Störungstheorie in der Quantenchromodynamik (QCD) vorhergesagt werden. Die Produktion von \textit{bottom}-Quarks in solchen Kollisionen kann als Maßstab genutzt werden, um die Vorhersagen der QCD zu testen, da diese Quarks die Dynamik des Produktionsprozesses bei Skalen wieder spiegelt, in der eine Störungsrechnung ohne Einschränkungen möglich ist. Auf Grund der hohen Masse von Teilchen, die ein \textit{bottom}-Quark enthalten, erhält der gemessene, hadronische Zustand den größten Teil der Information von dem Produktionsprozess der Quarks. Weil sie eine große Produktionsrate besitzen, spielen sie und ihre Zerfallsprodukte eine wichtige Rolle als Untergrund in vielen Analysen, insbesondere in Suchen nach neuer Physik. In ihrer herausragenden Stellung in der dritten Quark-Generation könnten sich vermehrt Zeichen im Vergleich zu den leichteren Quarks für neue Phänomene zeigen. Daher ist die Untersuchung des Verhältnisses zwischen der Produktion von Jets, die solche \textit{bottom}-Quarks enthalten, auch bekannt als $b$-Jets, und aller nachgewiesener Jets ein wichtiger Indikator für neue massive Objekte. In dieser Arbeit werden die Produktionsrate und die Korrelationen von Paaren aus $b$-Jets bestimmt und nach ersten Hinweisen eines neuen massiven Teilchens, das bisher nicht im Standard-Modell enthalten ist, in dem invarianten Massenspektrum der $b$-Jets gesucht. Am Large Hadron Collider (LHC) kollidieren zwei Protonenstrahlen bei einer Schwerpunktsenergie von $\sqrt s = 7$ TeV, und es werden viele solcher Paare aus $b$-Jets produziert. Diese Analyse benutzt die aufgezeichneten Kollisionen des ATLAS-Detektors. Die integrierte Luminosität der verwendbaren Daten beläuft sich auf 34~pb$^{-1}$. $b$-Jets werden mit Hilfe ihrer langen Lebensdauer und den rekonstruierten, geladenen Zerfallsprodukten identifiziert. Für diese Analyse müssen insbesondere die Unterschiede im Verhalten von Jets, die aus leichten Objekten wie Gluonen und leichten Quarks hervorgehen, zu diesen $b$-Jets beachtet werden. Die Energieskala dieser $b$-Jets wird untersucht und die zusätzlichen Unsicherheit in der Energiemessung der Jets bestimmt. Effekte bei der Jet-Rekonstruktion im Detektor, die einzigartig für $b$-Jets sind, werden studiert, um letztlich diese Messung unabhängig vom Detektor und auf Niveau der Hadronen auswerten zu können. Hiernach wird die Messung zu Vorhersagen auf nächst-zu-führender Ordnung verglichen. Dabei stellt sich heraus, dass die Vorhersagen in Übereinstimmung zu den aufgenommenen Daten sind. Daraus lässt sich schließen, dass der zugrunde liegende Produktionsmechanismus auch in diesem neu erschlossenen Energiebereich am LHC gültig ist. Jedoch werden auch erste Hinweise auf Mängel in der Beschreibung der Eigenschaften dieser Ereignisse gefunden. Weiterhin können keine Anhaltspunkte für eine neue Resonanz, die in Paare aus $b$-Jets zerfällt, in dem invarianten Massenspektrum bis etwa 1.7~TeV gefunden werden. Für das Auftreten einer solchen Resonanz mit einer Gauß-förmigen Massenverteilung werden modell-unabhängige Grenzen berechnet.
Resumo:
In this thesis the measurement of the effective weak mixing angle wma in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry (AFB) in electron-positron final states at the ATLAS experiment at the LHC. The AFB is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction pp to zgamma + X to ee + X taking a total integrated luminosity of 4.8\,fb^(-1) of data into account. The data was recorded at a proton-proton center-of-mass energy of sqrt(s)=7TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on wma are related to other SM parameters like the mass of the Higgs boson.rnrnBecause of the symmetric initial state constellation of colliding protons, there is no favoured forward or backward direction in the experimental setup. The reference axis used in the definition of the polar angle is therefore chosen with respect to the longitudinal boost of the electron-positron final state. This leads to events with low absolute rapidity have a higher chance of being assigned to the opposite direction of the reference axis. This effect called dilution is reduced when events at higher rapidities are used. It can be studied including electrons and positrons in the forward regions of the ATLAS calorimeters. Electrons and positrons are further referred to as electrons. To include the electrons from the forward region, the energy calibration for the forward calorimeters had to be redone. This calibration is performed by inter-calibrating the forward electron energy scale using pairs of a central and a forward electron and the previously derived central electron energy calibration. The uncertainty is shown to be dominated by the systematic variations.rnrnThe extraction of wma is performed using chi^2 tests, comparing the measured distribution of AFB in data to a set of template distributions with varied values of wma. The templates are built in a forward folding technique using modified generator level samples and the official fully simulated signal sample with full detector simulation and particle reconstruction and identification. The analysis is performed in two different channels: pairs of central electrons or one central and one forward electron. The results of the two channels are in good agreement and are the first measurements of wma at the Z resonance using electron final states at proton-proton collisions at sqrt(s)=7TeV. The precision of the measurement is already systematically limited mostly by the uncertainties resulting from the knowledge of the parton distribution functions (PDF) and the systematic uncertainties of the energy calibration.rnrnThe extracted results of wma are combined and yield a value of wma_comb = 0.2288 +- 0.0004 (stat.) +- 0.0009 (syst.) = 0.2288 +- 0.0010 (tot.). The measurements are compared to the results of previous measurements at the Z boson resonance. The deviation with respect to the combined result provided by the LEP and SLC experiments is up to 2.7 standard deviations.
Resumo:
La sezione d’urto totale adronica gioca un ruolo fondamentale nel programma di fisica di LHC. Un calcolo di questo parametro, fondamentale nell’ambito della teoria delle interazioni forti, non é possibile a causa dell’inapplicabilità dell’approccio perturbativo. Nonostante ciò, la sezione d’urto può essere stimata, o quanto meno le può essere dato un limite, grazie ad un certo numero di relazioni, come ad esempio il Teorema Ottico. In questo contesto, il detector ALFA (An Absolute Luminosity For ATLAS) sfrutta il Teorema Ottico per determinare la sezione d’urto totale misurando il rate di eventi elastici nella direzione forward. Un tale approccio richiede un metodo accurato di misura della luminosità in condizioni sperimentali difficoltose, caratterizzate da valori di luminosità istantanea inferiore fino a 7 ordini di grandezza rispetto alle normali condizioni di LHC. Lo scopo di questa tesi è la determinazione della luminosità integrata di due run ad alto β*, utilizzando diversi algoritmi di tipo Event-Counting dei detector BCM e LUCID. Particolare attenzione è stata riservata alla sottrazione del fondo e allo studio delle in- certezze sistematiche. I valori di luminosità integrata ottenuti sono L = 498.55 ± 0.31 (stat) ± 16.23 (sys) μb^(-1) and L = 21.93 ± 0.07 (stat) ± 0.79 (sys) μb^(-1), rispettivamente per i due run. Tali saranno forniti alla comunità di fisica che si occupa della misura delle sezioni d’urto protone-protone, elastica e totale. Nel Run II di LHC, la sezione d’urto totale protone-protone sarà stimata con un’energia nel centro di massa di 13 TeV per capire meglio la sua dipendenza dall’energia in un simile regime. Gli strumenti utilizzati e l’esperienza acquisita in questa tesi saranno fondamentali per questo scopo.
Resumo:
Major modifications in the design and techniques of total ankle replacement have challenged the perception that ankle arthrodesis is the treatment of choice for end-stage ankle arthritis. High complication and revision rates have been reported after both procedures.
Resumo:
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of root s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K-s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
One of the most significant aspects of a building’s acoustic behavior is the airborne sound insulation of the room façades, since this determines the protection of its inhabitants against environmental noise. For this reason, authorities in most countries have established in their acoustic regulations for buildings the minimum value of sound insulation that must be respected for façades. In order to verify compliance with legal requirements it is usual to perform acoustic measurements in the finished buildings and then compare the measurement results with the established limits. Since there is always a certain measurement uncertainty, this uncertainty must be calculated and taken into account in order to ensure compliance with specifications. The most commonly used method for measuring sound insulation on façades is the so-called Global Loudspeaker Method, specified in ISO 140-5:1998. This method uses a loudspeaker placed outside the building as a sound source. The loudspeaker directivity has a significant influence on the measurement results, and these results may change noticeably by choosing different loudspeakers, even though they all fulfill the directivity requirements of ISO 140-5. This work analyzes the influence of the loudspeaker directivity on the results of façade sound insulation measurement, and determines its contribution to measurement uncertainty. The theoretical analysis is experimentally validated by means of an intermediate precision test according to ISO 5725-3:1994, which compares the values of sound insulation obtained for a façade using various loudspeakers with different directivities
Resumo:
The verification of compliance with a design specification in manufacturing requires the use of metrological instruments to check if the magnitude associated with the design specification is or not according with tolerance range. Such instrumentation and their use during the measurement process, has associated an uncertainty of measurement whose value must be related to the value of tolerance tested. Most papers dealing jointly tolerance and measurement uncertainties are mainly focused on the establishment of a relationship uncertainty-tolerance without paying much attention to the impact from the standpoint of process cost. This paper analyzes the cost-measurement uncertainty, considering uncertainty as a productive factor in the process outcome. This is done starting from a cost-tolerance model associated with the process. By means of this model the existence of a measurement uncertainty is calculated in quantitative terms of cost and its impact on the process is analyzed.
Resumo:
One of the most significant aspects of a building?s acoustic behavior is the airborne sound insulation of the room façades, since this determines the protection of its inhabitants against environmental noise. For this reason, authorities in most countries have established in their acoustic regulations for buildings the minimum value of sound insulation that must be respected for façades. In order to verify compliance with legal requirements it is usual to perform acoustic measurements in the finished buildings and then compare the measurement results with the established limits. Since there is always a certain measurement uncertainty, this uncertainty must be calculated and taken into account in order to ensure compliance with specifications. The most commonly used method for measuring sound insulation on façades is the so-called Global Loudspeaker Method, specified in ISO 140-5:1998. This method uses a loudspeaker placed outside the building as a sound source. The loudspeaker directivity has a significant influence on the measurement results, and these results may change noticeably by choosing different loudspeakers, even though they all fulfill the directivity requirements of ISO 140-5. This work analyzes the influence of the loudspeaker directivity on the results of façade sound insulation measurement, and determines its contribution to measurement uncertainty. The theoretical analysis is experimentally validated by means of an intermediate precision test according to ISO 5725-3:1994, which compares the values of sound insulation obtained for a façade using various loudspeakers with different directivities. Keywords: Uncertainty, Façade, Insulation
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.