967 resultados para tissue fat
Resumo:
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Melphalan is commonly used as a cytotoxic agent in isolated limb perfusion for locally recurrent malignant melanoma. The time course of melphalan concentrations in perfusate and tissues during a 60-min melphalan perfusion and 30-min drug-free washout in the single-pass perfused rat hindlimb was examined using a physiologically based pharmacokinetic model. The rat hindlimbs were perfused with Krebs-Heinseleit buffer containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 at a constant rate of 3.8 ml/min. The concentration of melphalan in perfusate and tissues was determined by highperformance liquid chromatography. The tissue concentrations of melphalan were significantly higher with the perfusate containing dextran than BSA during the 60-min perfusion. During the washout period, the melphalan concentration in the perfusates decreased rapidly in first few minutes, followed by a slower monoexponential decline. The estimated half life (t(1/2)) for melphalan removal from skin and fat was 59 +/- 2 min for both BSA and dextran perfusates. However, the estimated t(1/2) for melphalan removal from muscle was 79 and 96 min for BSA and dextran washout perfusates, respectively. The predicted concentration-time profiles obtained for melphalan with BSA and dextran perfusates appear to correspond closely to the observed data. This study showed that the uptake of melphalan into perfused tissues is impaired by the use of perfusates in which melphalan is highly bound. Melphalan washout from muscle, but not skin and fat, was facilitated by the use of perfusates in which melphalan is highly protein bound.
Resumo:
Objectives: Perifascial areolar tissue (PAT) consists of loose areolar tissue with viscoelastic properties that are similar to those found in tissues in the superficial layer of the vocal fold. The aim of this study was to quantify the inflammatory process and the collagen content of the graft, as well as that of the host tissue, after placement of a strip of PAT into the rabbit vocal fold. Methods: Surgeries were performed on 30 rabbits. The grafts were implanted in pockets that were surgically created in the right vocal fold. The left vocal fold (control group) was subjected only to surgical manipulation. The animals were divided into 3 groups for evaluations at 15 days, 3 months, and 6 months, and their larynx tissues were subsequently reviewed by histology. Results: The grafts were characterized by disorganized and thick collagen bundles and were identified in all study groups. The collagen density stayed constant over time. There was an acute inflammatory response induced by the graft at 15 clays that did not exist in the specimens taken at 3 and 6 months. Deposition of collagen fibers in the lamina propria was observed starting at 15 days after the operation and was more intense in the experimental vocal fold than in the control vocal fold. Conclusions: Our findings indicated that PAT has a low tendency for promoting an inflammatory response. However, there was a loss of the original architecture of the graft tissue and a greater deposition of collagen in the implanted vocal folds than in the control group.
Resumo:
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Resumo:
Visceral abdominal fat has been associated to cardiovascular risk factors and coronary artery disease (CAD). Computed tomography (CT) coronary angiography is an emerging technology allowing detection of both obstructive and nonobstructive CAD adding information to clinical risk strati. cation. The aim of this study was to evaluate the association between CAD and adiposity measurements assessed clinically and by CT. We prospectively evaluated 125 consecutive subjects (57% men, age 56.0 +/- 12 years) referred to perform CT angiography. Clinical and laboratory variables were determined and CT angiography and abdominal CT were performed in a 64-slice scanner. CAD was defined as any plaque calcified or not detected by CT angiography. Visceral and subcutaneous adiposity areas were determined at different intervertebral levels. CT angiography detected CAD in 70 (56%) subjects, and no association was found with usual anthropometric adiposity measurements (waist and hip circumferences and body mass index). Otherwise, CT visceral fat areas (VFA) were significantly related to CAD. VFA T12-L1 values >= 145 cm(2) had an odds ratio of 2.85 (95% CI 1.30-6.26) and VFA L4-L5 >= 150 cm(2) had a 2.87-fold (95% CI 1.31-6.30) CAD risk. The multivariate analysis determined age and VFA T12-L1 as the only independent variables associated to CAD. Visceral fat assessed by CT is an independent marker of CAD determined by CT angiography. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
Lipins constitute a novel family of Mg2+-dependent phosphatidate phosphatases that catalyze the dephosphorylation of phosphatidic acid to yield diacylglycerol, an important intermediate in lipid metabolism and cell signaling. Whereas a single lipin is detected in less complex organisms, in mammals there are distinct lipin isoforms and paralogs that are differentially expressed among tissues. Compatible with organism tissue complexity, we show that the single Drosophila Lpin1 ortholog (CG8709, here named DmLpin) expresses at least three isoforms (DmLpinA, DmLpinK and DmLpinJ) in a temporal and spatially regulated manner. The highest levels of lipin in the fat body, where DmLpinA and DmLpinK are expressed, correlate with the highest levels of triacylglycerol (TAG) measured in this tissue. DmLpinK is the most abundant isoform in the central nervous system, where TAG levels are significantly lower than in the fat body. In the testis, where TAG levels are even lower, DmLpinJ is the predominant isoform. Together, these data suggest that DmLpinA might be the isoform that is mainly involved in TAG production, and that DmLpinK and DmLpinJ could perform other cellular functions. In addition, we demonstrate by immunofluorescence that lipins are most strongly labeled in the perinuclear region of the fat body and ventral ganglion cells. In visceral muscles of the larval midgut and adult testis, lipins present a sarcomeric distribution. In the ovary chamber, the lipin signal is concentrated in the internal rim of the ring canal. These specific subcellular localizations of the Drosophila lipins provide the basis for future investigations on putative novel cellular functions of this protein family.
Resumo:
OBJECTIVE: To observe the chronic effects of human growth hormone (hGH) and AOD9604 (a C-terminal fragment of hGH) on body weight, energy balance, and substrate oxidation rates in obese (ob/ob) and lean C57BL/6Jmice. In vitro assays were used to confirm whether the effects of AOD9604 are mediated through the hGH receptor, and if this peptide is capable of cell proliferation via the hGH receptor. METHOD: Obese and lean mice were treated with hGH, AOD or saline for 14 days using mini-osmotic pumps. Body weight, caloric intake, resting energy expenditure, fat oxidation, glucose oxidation, and plasma glucose, insulin and glycerol were measured before and after treatment. BaF-BO3 cells transfected with the hGH receptor were used to measure in Vitro I-125-hGH receptor binding and cell proliferation. RESULTS: Both hGH and AOD significantly reduced body weight gain in obese mice. This was associated with increased in vivo fat oxidation and increased plasma glycerol levels (an index of lipolysis). Unlike hGH, however, AOD9604 did not induce hyperglycaemia or reduce insulin secretion. AOD9604 does not compete for the hGH receptor and nor does it induce cell proliferation, unlike hGH. CONCLUSIONS: Both hGH and its C-terminal fragment reduce body weight gain, increase fat oxidation, and stimulate lipolysis in obese mice, yet AOD9604 does not interact with the hGH receptor. Thus, the concept of hGH behaving as a pro-hormone is further confirmed. This data shows that fragments of hGH can act in a manner novel to traditional hGH-stimulated pathways.
Resumo:
Height, weight, and tissue accrual were determined in 60 male and 53 female adolescents measured annually over six years using standard anthropometry and dual-energy X-ray absorptiometry (DXA). Annual velocities were derived, and the ages and magnitudes of peak height and peak tissue velocities were determined using a cubic spline fit to individual data. Individuals were rank ordered on the basis of sex and age at peak height velocity (PHV) and then divided into quartiles: early (lowest quartile), average (middle two quartiles), and late (highest quartile) maturers. Sex- and maturity-related comparisons in ages and magnitudes of peak height and peak tissue velocities were made. Males reached peak velocities significantly later than females for all tissues and had significantly greater magnitudes at peak. The age at PHV was negatively correlated with the magnitude of PHV in both sexes. At a similar maturity point (age at PHV) there were no differences in weight or fat mass among maturity groups in both sexes. Late maturing males, however, accrued more bone mineral and lean mass and were taller at the age of PHV compared to early maturers. Thus, maturational status (early, average, or late maturity) as indicated by age at PHV is inversely related to the magnitude and late maturers for weight and fat mass in boys and girls. Am. J. Hum. Biol. 13:1-8, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
in a recent publication, Eriksson et al. [1] explored the relationship between size at birth and resting metabolic rate and body composition in adulthood in a cohort of over 300 men and women. They reported an unexpected finding that people of both sexes who had a low birth weight also had a higher metabolic activity per unit muscle tissue. This conclusion was drawn from an analysis where resting metabolic rate (expressed as kcal/kg fat-free mass) in adulthood was examined relative to the birth weight of the subject. One explanation that they suggested was that the apparent increased activity of muscle tissue resulted from an increased sympathetic drive associated with low birth weight. There may be a less physiological reason for the findings of Eriksson et al. Whilst the data are not given specifically in the text, it can be seen clearly from Fig. 1 in the paper that the mean fat-free mass measured in adulthood increased, in both sexes, from the lightest birth weight group to the heaviest birth weight group when the cohort were divided into tertiles based on birth weight. The crux of the issue is that in many - indeed most - cases, expressing resting energy expenditure as kcal/kg fat-free mass does not totally adjust for fat-free mass [2 - 5], and a bias is introduced so that those who have a higher fat-free mass will tend to have a lower resting energy expenditure when expressed per kg fat-free mass. This bias found when expressing many physiological parameters relative to body size, body weight or body composition has long been known [6], and should be carefully considered by appropriate adjustment and hence analysis.
Resumo:
The dissected carcass composition and fatty acid profiles of intermuscular fat from 110 male goat kids from six genotypes i.e. Boer x Angora (BA), Boer x Feral (BF), Boer x Saanen (BS), Feral x Feral (1717), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared. Carcass tissue distribution for various genotypes was: muscle (63-66%), fat (10-13%) and bone (21-24%). Genotype significantly (P < 0.05) influenced the carcass composition; BA and FF carcasses had significantly higher muscle to bone ratio, while carcasses from BS kids were leaner compared to other genotypes. However, the two slaughter weight groups did not differ significantly (P > 0.05) in terms of carcass composition, when compared at the same carcass weight. In the present study, significant (P < 0.01) correlations were observed between percentage of muscle, fat and bone in most of the primal cuts and that in the carcass side. The main saturated fatty acids (SFAs) identified were palmitic (16:0) and stearic acid (18:0), while oleic acid (18: 1, omega9) was the main unsaturated fatty acid (UFA) in the intermuscular fat from goat kids. There were significant (P < 0.05) differences between genotypes in the proportions of individual fatty acids. Adipose tissue from BS kids had significantly higher UFAs (mainly oleic acid) and thus had a significantly lower melting point compared to other genotypes. There were significantly higher proportions of palmitic acid (35%) in the adipose tissue from Capretto kids compared to that from Chevon kids (22%). The concentration of UFAs increased in the adipose tissue from Capretto to Chevon carcasses. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.