962 resultados para tilting modules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish and other aquatic animals contribute to the food security of citizens of developing countries, both as a source of income and as a component of healthy diets, yet fishing is not currently captured in most integrated household surveys. This sourcebook provides essential technical guidance on the design of statistical modules and questionnaires aimed at collecting fishery data at the household level. Background on the main policies important to the fishery sector, information on the data needed to analyze issues of policy relevance, and methodology on the construction of survey questions to collect necessary data are also provided. The document is organized to provide essential technical guidance on how to design statistical modules and questionnaires aimed at collecting fishery data at the household level. It includes an overview of the main technical and statistical challenges related to sampling fishery-dependent households. The document starts with an introductory section identifying the potential reasons why fisheries and in particular small-scale fisheries have not been adequately included in national statistical systems in a large number of countries. The report then proposes a succinct review of what is known (and what remains unknown) about small-scale fisheries and their contribution to the livelihoods of households in sub-Saharan Africa. It also provides readers with background on the main policies that are important to the fishery sector, information on the data needed to analyze issues of policy relevance, and methodology on the construction of survey questions to collect necessary data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. RESULTS: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs. AVAILABILITY: If interested in the code for the work presented in this article, please contact the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.