933 resultados para tilt sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A síncope neurocardiogénica (SNc) é uma entidade clínica comum, resultante de uma resposta autonómica reflexa excessiva durante o stress ortostático. As diferentes opções terapêuticas são controversas e de eficácia limitada. O treino de ortostatismo (TTr) tem-se mostrado uma alternativa prometedora no tratamento destes doentes (D). No entanto, permanece por esclarecer o seu mecanismo de acção e o impacto clínico numa população com SNc recorrente. Objectivo: Caracterizar a resposta hemodinâmica e autonómica durante um programa de TTr em doentes com SNc refratária às medidas convencionais. População e métodos: Foram estudados 28D (50% do sexo masculino, 41±14 anos), sem evidência de cardiopatia, com SNc documentada em teste de ortostatismo passivo. O TTr incluiu 9 sessões hospitalares (3x/semana, 30 minutos) com monitorizac¸ão contínua de pressão arterial e frequência cardíaca (60◦ - 6 sessões - 70◦ - 3 sessões), complementadas com treino diário no domicílio e elevação da cabeceira a 10◦ durante o sono. O volume sistólico, o débito cardíaco, a resistência vascular periférica, a sensibilidade do barorreflexo e a variabilidade da frequência cardíaca foram calculados. Todos os doentes foram reavaliados no fim do 1.◦ mês e no final de cada 6 meses num período máximo de 36 meses (follow-up 24±12 meses). Resultados: Ao longo das sessões de TTr verificou-se um aumento significativo e consistente da resistência total periférica (1485±225 vs. 1591±187 dyne*s/cm−5, p < 0,05) associado a uma diminuição do seu desvio-padrão (206±60 vs. 150±42, p < 0,05). Durante o período de follow-up, houve recorrência de síncope em 5D (19%), com redução significativa do número de síncopes (4,0±3,2/D nos 12 meses pre-TTr vs. 1,4±0,8/D pos-TTr, p < 0,05). Conclusão: Em doentes com SNc refratária, o TTr mostrou ser uma opção terapêutica eficaz, com benefício a longo prazo. A melhor tolerância ao ortostatismo parece resultar do aumento da reserva vasoconstritora e da sua menor variabilidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurocardiogenic syncope (NCS) is a common clinical entity resulting from an excessive reflex autonomic response, particularly during orthostatism. Treatment options are controversial and of limited effectiveness. Tilt training (TT) is a promising option to treat these patients. However, its mechanism of action and clinical impact remain unclear. OBJECTIVE: To characterize hemodynamic and autonomic responses during a TT program in patients with NCS refractory to conventional measures. METHODS: We studied 28 patients (50% male, mean age 41±14 years) without structural heart disease, with NCS documented by tilt testing. The TT program included 9 tilt sessions (3 times a week, 30 min) (60° - 6 sessions, 70° - 3 sessions), under ECG and blood pressure monitoring combined with home orthostatic self-training and 10° head-up during sleep. Systolic volume, cardiac output, total peripheral resistance, baroreflex sensitivity and heart-rate variability were computed. Patients were reassessed at 1 month and every 6 months for a maximum of 36 months (24±12 months). RESULTS: Over the course of the TT program there was a significant increase in total peripheral resistance (1485±225 vs. 1591±187 dyn·s·cm(-5), p<0.05), with a decrease in standard deviation (206±60 vs. 150±42, p<0.05). During follow-up, syncope recurred in five patients (19%), with a significant reduction in the number of episodes (4.0±3.2/patient in the 12 months before TT vs. 1.4±0.8/patient post-TT, p<0.05). CONCLUSION: In refractory NCS, TT may be an effective therapeutic option, with long-term benefits. These results appear to be due to an increase in vasoconstrictor reserve combined with a reduction in its variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION AND OBJECTIVES: Recurrent syncope has a significant impact on quality of life. The development of measurement scales to assess this impact that are easy to use in clinical settings is crucial. The objective of the present study is a preliminary validation of the Impact of Syncope on Quality of Life questionnaire for the Portuguese population. METHODS: The instrument underwent a process of translation, validation, analysis of cultural appropriateness and cognitive debriefing. A population of 39 patients with a history of recurrent syncope (>1 year) who underwent tilt testing, aged 52.1 ± 16.4 years (21-83), 43.5% male, most in active employment (n=18) or retired (n=13), constituted a convenience sample. The resulting Portuguese version is similar to the original, with 12 items in a single aggregate score, and underwent statistical validation, with assessment of reliability, validity and stability over time. RESULTS: With regard to reliability, the internal consistency of the scale is 0.9. Assessment of convergent and discriminant validity showed statistically significant results (p<0.01). Regarding stability over time, a test-retest of this instrument at six months after tilt testing with 22 patients of the sample who had not undergone any clinical intervention found no statistically significant changes in quality of life. CONCLUSIONS: The results indicate that this instrument is of value for assessing quality of life in patients with recurrent syncope in Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how the brain works has been one of the greatest goals of mankind. This desire fuels the scientific community to pursue novel techniques able to acquire the complex information produced by the brain at any given moment. The Electrocorticography (ECoG) is one of those techniques. By placing conductive electrodes over the dura, or directly over the cortex, and measuring the electric potential variation, one can acquire information regarding the activation of those areas. In this work, transparent ECoGs, (TrECoGs) are fabricated through thin film deposition of the Transparent Conductive Oxides (TCOs) Indium-Zinc-Oxide (IZO) and Gallium-Zinc-Oxide (GZO). Five distinct devices have been fabricated via shadow masking and photolithography. The data acquired and presented in this work validates the TrECoGs fabricated as efficient devices for recording brain activity. The best results were obtained for the GZO- based TrECoG, which presented an average impedance of 36 kΩ at 1 kHz for 500 μm diameter electrodes, a transmittance close to 90% for the visible spectrum and a clear capability to detect brain signal variations. The IZO based devices also presented high transmittance levels (90%), but with higher impedances, which ranged from 40 kΩ to 100 kΩ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the report for the unit “Sociology of New Information Technologies” of the Master on Computer Sciences at FCT/University Nova Lisbon in 2015-16. The responsible of this curricular unit is Prof. António Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE - To assess the diagnostic value, the characteristics, and feasibility of tilt-table testing in children and adolescents. METHODS - From August 1991 to June 1997, we retrospectively assessed 94 patients under the age of 18 years who had a history of recurring syncope and presyncope of unknown origin and who were referred for tilt-table testing. These patients were divided into 2 groups: group I (children) - 36 patients with ages ranging from 3 to 12 (mean of 9.19±2.31) years; group II (adolescents) - 58 patients with ages ranging from 13 to 18 (mean of 16.05±1.40) years. We compared the positivity rate, the type of hemodynamic response, and the time period required for the test to become positive in the 2 groups. RESULTS - The positivity rates were 41.6 % and 50% for groups I and II, respectively. The pattern of positive hemodynamic response that predominated in both groups was the mixed response. The mean time period required for the test to become positive was shorter in group I (11.0±7.23 min) than in group II (18.44±7.83 min). No patient experienced technical difficulty or complications. CONCLUSION - No difference was observed in regard to feasibility, positivity rate, and pattern of positive response for the tilt-table test in children and adolescents. Pediatric patients had earlier positive responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the influences of circadian variations on tilt-table testing (TTT) results by comparing the positivity rate of the test performed during the morning with that of the test performed in the afternoon and to evaluate the reproducibility of the results in different periods of the day. METHODS: One hundred twenty-three patients with recurrent unexplained syncope or near-syncope referred for TTT were randomized into 2 groups. In group I, 68 patients, TTT was performed first in the afternoon and then in the morning. In group II, 55 patients, the test was performed first in the morning and then in the afternoon. RESULTS: The TTT protocol was the prolonged passive test, without drug sensitization. Twenty-nine (23.5%) patients had a positive result in at least one of the periods. The positivity rate for each period was similar: 20 (16.2%) patients in the afternoon and 19 (15.4%) in the morning (p=1.000). Total reproducibility (positive/positive and negative/negative) was observed in 49 (89%) patients in group I and in 55 (81%) in group II. Reproducibility of the results was obtained in 94 (90.4%) patients with first negative tests but in 10 (34%) patients with first positive tests. CONCLUSION: TTT could be performed during any period of the day, and even in the 2 periods to enhance positivity. Considering the low reproducibility rate of the positive tests, serial TTT to evaluate therapeutic efficacy should be performed during the same period of the day.