945 resultados para three time scales
Resumo:
The Laurichard active rock glacier is the permafrost-related landform with the longest record of monitoring in France, including an annual geodetic survey, repeated geoelectrical campaigns from 1979 onwards and continuous recording of ground temperature since 2003. These data were used to examine changes in creep rates and internal structure from 1986 to 2006. The control that climatic variables exert on rock glacier kinematics was investigated over three time scales. Between the 1980s and the early 2000s, the main observed changes were a general increase in surface velocity and a decrease in internal resistivity. At a multi-year scale, the high correlation between surface movement and snow thickness in the preceding December appears to confirm the importance of snow cover conditions in early winter through their influence on the ground thermal regime. A comparison of surface velocities, regional climatic datasets and ground sub-surface temperatures over six years suggests a strong relation between rock glacier deformation and ground temperature, as well as a role for liquid water due to melt of thick snow cover. Finally, unusual surface lowering that accompanied peak velocities in 2004 may be due to a general thaw of the top of the permafrost, probably caused both by two successive snowy winters and by high energy inputs during the warm summer of 2003.
Resumo:
We examine the scale invariants in the preparation of highly concentrated w/o emulsions at different scales and in varying conditions. The emulsions are characterized using rheological parameters, owing to their highly elastic behavior. We first construct and validate empirical models to describe the rheological properties. These models yield a reasonable prediction of experimental data. We then build an empirical scale-up model, to predict the preparation and composition conditions that have to be kept constant at each scale to prepare the same emulsion. For this purpose, three preparation scales with geometric similarity are used. The parameter N¿D^α, as a function of the stirring rate N, the scale (D, impeller diameter) and the exponent α (calculated empirically from the regression of all the experiments in the three scales), is defined as the scale invariant that needs to be optimized, once the dispersed phase of the emulsion, the surfactant concentration, and the dispersed phase addition time are set. As far as we know, no other study has obtained a scale invariant factor N¿Dα for the preparation of highly concentrated emulsions prepared at three different scales, which covers all three scales, different addition times and surfactant concentrations. The power law exponent obtained seems to indicate that the scale-up criterion for this system is the power input per unit volume (P/V).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The variability of renewable energy is widely recognised as a challenge for integrating high levels of renewable generation into electricity systems. However, to explore its implications effectively, variability itself should first be clearly understood. This is particularly true for national electricity systems with high planned penetration of renewables and limited interconnection such as the UK. Variability cannot be considered as a distinct resource property with a single measurable parameter, but is a multi-faceted concept best described by a range of distinct characteristics. This paper identifies relevant characteristics of variability, and considers their implications for energy research. This is done through analysis of wind, solar and tidal current resources, with a primary focus on the Bristol Channel region in the UK. The relationship with electricity demand is considered, alongside the potential benefits of resource diversity. Analysis is presented in terms of persistence, distribution, frequency and correlation between supply and demand. Marked differences are seen between the behaviours of the individual resources, and these give rise to a range of different implications for system integration. Wind shows strong persistence and a useful seasonal pattern, but also a high spread in energy levels at timescales beyond one or two days. The solar resource is most closely correlated with electricity demand, but is undermined by night-time zero values and an even greater spread of monthly energy delivered than wind. In contrast, the tidal resource exhibits very low persistence, but also much greater consistency in energy values assessed across monthly time scales. Whilst this paper focuses primarily on the behaviour of resources, it is noted that discrete variability characteristics can be related to different system impacts. Persistence and predictability are relevant for system balancing, whereas statistical distribution is more relevant when exploring issues of asset utilisation and energy curtailment. Areas of further research are also identified, including the need to assess the value of predictability in relation to other characteristics.
Resumo:
We use new neutron scattering instrumentation to follow in a single quantitative time-resolving experiment, the three key scales of structural development which accompany the crystallisation of synthetic polymers. These length scales span 3 orders of magnitude of the scattering vector. The study of polymer crystallisation dates back to the pioneering experiments of Keller and others who discovered the chain-folded nature of the thin lamellae crystals which are normally found in synthetic polymers. The inherent connectivity of polymers makes their crystallisation a multiscale transformation. Much understanding has developed over the intervening fifty years but the process has remained something of a mystery. There are three key length scales. The chain folded lamellar thickness is ~ 10nm, the crystal unit cell is ~ 1nm and the detail of the chain conformation is ~ 0.1nm. In previous work these length scales have been addressed using different instrumention or were coupled using compromised geometries. More recently researchers have attempted to exploit coupled time-resolved small-angle and wide-angle x-ray experiments. These turned out to be challenging experiments much related to the challenge of placing the scattering intensity on an absolute scale. However, they did stimulate the possibility of new phenomena in the very early stages of crystallisation. Although there is now considerable doubt on such experiments, they drew attention to the basic question as to the process of crystallisation in long chain molecules. We have used NIMROD on the second target station at ISIS to follow all three length scales in a time-resolving manner for poly(e-caprolactone). The technique can provide a single set of data from 0.01 to 100Å-1 on the same vertical scale. We present the results using a multiple scale model of the crystallisation process in polymers to analyse the results.
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.
Resumo:
We use a 27 year long time series of repeated transient tracer observations to investigate the evolution of the ventilation time scales and the related content of anthropogenic carbon (Cant) in deep and bottom water in the Weddell Sea. This time series consists of chlorofluorocarbon (CFC) observations from 1984 to 2008 together with first combined CFC and sulphur hexafluoride (SF6) measurements from 2010/2011 along the Prime Meridian in the Antarctic Ocean and across the Weddell Sea. Applying the Transit Time Distribution (TTD) method we find that all deep water masses in the Weddell Sea have been continually growing older and getting less ventilated during the last 27 years. The decline of the ventilation rate of Weddell Sea Bottom Water (WSBW) and Weddell Sea Deep Water (WSDW) along the Prime Meridian is in the order of 15-21%; the Warm Deep Water (WDW) ventilation rate declined much faster by 33%. About 88-94% of the age increase in WSBW near its source regions (1.8-2.4 years per year) is explained by the age increase of WDW (4.5 years per year). As a consequence of the aging, the Cant increase in the deep and bottom water formed in the Weddell Sea slowed down by 14-21% over the period of observations.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
The success of any efforts to determine the effects of climate change on marine ecosystems depends on understanding in the first instance the natural variations, which contemporarily occur on the interannual and shorter time scales. Here we present results on the environmental controls of zooplankton distribution patterns and behaviour in the eastern Weddell Sea, Southern Ocean. Zooplankton abundance and vertical migration are derived from the mean volume backscattering strength (MVBS) and the vertical velocity measured by moored acoustic Doppler current profilers (ADCPs), which were deployed simultaneously at 64°S, 66.5°S and 69°S along the Greenwich Meridian from February, 2005, until March, 2008. While these time series span a period of full three years they resolve hourly changes. A highly persistent behavioural pattern found at all three mooring locations is the synchronous diel vertical migration (DVM) of two distinct groups of zooplankton that migrate between a deep residence depth during daytime and a shallow depth during nighttime. The DVM was closely coupled to the astronomical daylight cycles. However, while the DVM was symmetric around local noon, the annual modulation of the DVM was clearly asymmetric around winter solstice or summer solstice, respectively, at all three mooring sites. DVM at our observation sites persisted throughout winter, even at the highest latitude exposed to the polar night. Since the magnitude as well as the relative rate of change of illumination is minimal at this time, we propose that the ultimate causes of DVM separated from the light-mediated proximal cue that coordinates it. In all three years, a marked change in the migration behaviour occurred in late spring (late October/early November), when DVM ceased. The complete suspension of DVM after early November is possibly caused by the combination of two factors: (1) increased availability of food in the surface mixed layer provided by the phytoplankton spring bloom, and (2) vanishing diurnal enhancement of the threat from visually oriented predators when the illumination is quasi-continuous during the polar and subpolar summer. Zooplankton abundance in the water column, estimated as the mean MVBS in the depth range 50-300 m, was highest end of summer and lowest mid to end winter on the average annual cycle. However, zooplankton abundance varied several-fold between years and between locations. Based on satellite and in situ data of chlorophyll and sea ice as well as on hydrographic measurements, the interannual and spatial variations of zooplankton mean abundance can be explained by differences in the magnitude of the phytoplankton spring bloom, which develops during the seasonal sea ice retreat. Whereas the vernal ice melt appears necessary to stimulate the blooming of phytoplankton, it is not the determinator of the blooms magnitude, its areal extent and duration. A possible explanation for the limitation of the phytoplankton bloom in some years is top-down control. We hypothesise that the phytoplankton spring development can be curbed by grazing when the zooplankton had attained high abundance by growth during the preceding summer.
Resumo:
Il presente lavoro ha lo scopo di comprendere i processi sottesi ai pattern di coesistenza tra le specie di invertebrati sorgentizi, distinguendo tra dinamiche stocastiche e deterministiche. Le sorgenti sono ecosistemi complessi e alcune loro caratteristiche (ad esempio l’insularità, la stabilità termica, la struttura ecotonale “a mosaico”, la frequente presenza di specie rare ed endemiche, o l’elevata diversità in taxa) le rendono laboratori naturali utili allo studio dei processi ecologici, tra cui i processi di assembly. Al fine di studiare queste dinamiche è necessario un approccio multi-scala, per questo motivi sono state prese in considerazione tre scale spaziali. A scala locale è stato compiuto un campionamento stagionale su sette sorgenti (quattro temporanee e tre permanenti) del Monte Prinzera, un affioramento ofiolitico vicino alla città di Parma. In questa area sono stati valutati l’efficacia e l’impatto ambientale di diversi metodi di campionamento e sono stati analizzati i drivers ecologici che influenzano le comunità. A scala più ampia sono state campionate per due volte 15 sorgenti della regione Emilia Romagna, al fine di identificare il ruolo della dispersione e la possibile presenza di un effetto di niche-filtering. A scala continentale sono state raccolte informazioni di letteratura riguardanti sorgenti dell’area Paleartica occidentale, e sono stati studiati i pattern biogeografici e l’influenza dei fattori climatici sulle comunità. Sono stati presi in considerazione differenti taxa di invertebrati (macroinvertebrati, ostracodi, acari acquatici e copepodi), scegliendo tra quelli che si prestavano meglio allo studio dei diversi processi in base alle loro caratteristiche biologiche e all’approfondimento tassonomico raggiungibile. I campionamenti biologici in sorgente sono caratterizzati da diversi problemi metodologici e possono causare impatti sugli ambienti. In questo lavoro sono stati paragonati due diversi metodi: l’utilizzo del retino con un approccio multi-habitat proporzionale e l’uso combinato di trappole e lavaggio di campioni di vegetazione. Il retino fornisce dati più accurati e completi, ma anche significativi disturbi sulle componenti biotiche e abiotiche delle sorgenti. Questo metodo è quindi raccomandato solo se il campionamento ha come scopo un’approfondita analisi della biodiversità. D’altra parte l’uso delle trappole e il lavaggio della vegetazione sono metodi affidabili che presentano minori impatti sull’ecosistema, quindi sono adatti a studi ecologici finalizzati all’analisi della struttura delle comunità. Questo lavoro ha confermato che i processi niche-based sono determinanti nello strutturare le comunità di ambienti sorgentizi, e che i driver ambientali spiegano una rilevante percentuale della variabilità delle comunità. Infatti le comunità di invertebrati del Monte Prinzera sono influenzate da fattori legati al chimismo delle acque, alla composizione e all’eterogeneità dell’habitat, all’idroperiodo e alle fluttuazioni della portata. Le sorgenti permanenti mostrano variazioni stagionali per quanto riguarda le concentrazioni dei principali ioni, mentre la conduttività, il pH e la temperatura dell’acqua sono più stabili. È probabile che sia la stabilità termica di questi ambienti a spiegare l’assenza di variazioni stagionali nella struttura delle comunità di macroinvertebrati. L’azione di niche-filtering delle sorgenti è stata analizzata tramite lo studio della diversità funzionale delle comunità di ostracodi dell’Emilia-Romagna. Le sorgenti ospitano più del 50% del pool di specie regionale, e numerose specie sono state rinvenute esclusivamente in questi habitat. Questo è il primo studio che analizza la diversità funzionale degli ostracodi, è stato quindi necessario stilare una lista di tratti funzionali. Analizzando il pool di specie regionale, la diversità funzionale nelle sorgenti non è significativamente diversa da quella misurata in comunità assemblate in maniera casuale. Le sorgenti non limitano quindi la diversità funzionale tra specie coesistenti, ma si può concludere che, data la soddisfazione delle esigenze ecologiche delle diverse specie, i processi di assembly in sorgente potrebbero essere influenzati da fattori stocastici come la dispersione, la speciazione e le estinzioni locali. In aggiunta, tutte le comunità studiate presentano pattern spaziali riconoscibili, rivelando una limitazione della dispersione tra le sorgenti, almeno per alcuni taxa. Il caratteristico isolamento delle sorgenti potrebbe essere la causa di questa limitazione, influenzando maggiormente i taxa a dispersione passiva rispetto a quelli a dispersione attiva. In ogni caso nelle comunità emiliano-romagnole i fattori spaziali spiegano solo una ridotta percentuale della variabilità biologica totale, mentre tutte le comunità risultano influenzate maggiormente dalle variabili ambientali. Il controllo ambientale è quindi prevalente rispetto a quello attuato dai fattori spaziali. Questo risultato dimostra che, nonostante le dinamiche stocastiche siano importanti in tutte le comunità studiate, a questa scala spaziale i fattori deterministici ricoprono un ruolo prevalente. I processi stocastici diventano più influenti invece nei climi aridi, dove il disturbo collegato ai frequenti eventi di disseccamento delle sorgenti provoca una dinamica source-sink tra le diverse comunità. Si è infatti notato che la variabilità spiegata dai fattori ambientali diminuisce all’aumentare dell’aridità del clima. Disturbi frequenti potrebbero provocare estinzioni locali seguite da ricolonizzazioni di specie provenienti dai siti vicini, riducendo la corrispondenza tra gli organismi e le loro richieste ambientali e quindi diminuendo la quantità di variabilità spiegata dai fattori ambientali. Si può quindi concludere che processi deterministici e stocastici non si escludono mutualmente, ma contribuiscono contemporaneamente a strutturare le comunità di invertebrati sorgentizi. Infine, a scala continentale, le comunità di ostracodi sorgentizi mostrano chiari pattern biogeografici e sono organizzate lungo gradienti ambientali principalmente collegati altitudine, latitudine, temperatura dell’acqua e conducibilità. Anche la tipologia di sorgente (elocrena, reocrena o limnocrena) è influente sulla composizione delle comunità. La presenza di specie rare ed endemiche inoltre caratterizza specifiche regioni geografiche.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.