997 resultados para three dimensional


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convective downburst wind storms generate the peak annual gust wind speed for many parts of the non-cyclonic world at return periods of importance for ultimate limit state design. Despite this there is little clear understanding of how to appropriately design for these wind events given their significant dissimilarities to boundary layer winds upon which most design is based. To enhance the understanding of wind fields associated with these storms a three-dimensional numerical model was developed to simulate a multitude of idealised downburst scenarios and to investigate their near-ground wind characteristics. Stationary and translating downdraft wind events in still and sheared environments were simulated with baseline results showing good agreement with previous numerical work and full-scale observational data. Significant differences are shown in the normalised peak wind speed velocity profiles depending on the environmental wind conditions in the vicinity of the simulated event. When integrated over the height of mid- to high rise structures, all simulated profiles are shown to produce wind loads smaller than an equivalent 10 m height matched open terrain boundary layer profile. This suggests that for these structures the current design approach is conservative from an ultimate loading standpoint. Investigating the influence of topography on the structure of the simulated near-ground downburst wind fields, it is shown that these features amplify wind speeds in a manner similar to that expected for boundary layer winds, but the extent of amplification is reduced. The level of reduction is shown to be dependent on the depth of the simulated downburst outflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis­(4-car­bam­oylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carb­oxy­lic acid O-HOcarboxyl hydrogen-bonding inter­actions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water mol­ecule. In the crystal structure, the two inversion-related cations are inter­linked through the two water mol­ecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarbox­yl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water mol­ecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancers of the brain and central nervous system account for 1.6% of new cancers and 1.8% of cancer deaths globally. The highest rates of all developed nations are observed in Australia and New Zealand. There are known complexities associated with dose measurement of very small radiation fields. Here, 3D dosimetric verification of treatments for small intracranial tumours using gel dosimetry was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the ammonium salts of 3,5-dinitrobenzoic acid, NH4+ C7H3N2O6- (I), 4-nitrobenzoic acid, NH4+ C7H4N2O4- . 2H2O (II) and 2,4-dichlorobenzoic acid, NH4+ C7H3Cl2O2- . 0.5H2O (III), have been determined and their hydrogen-bonded structures are described. All salts form hydrogen-bonded polymeric structures, three-dimensional in (I) and two-dimensional in (II) and (III). With (I), a primary cation-anion cyclic association is formed [graph set R3/4(10)] through N-H...O hydrogen bonds, involving a carboxyl O,O' group on one side and a single carboxyl O-atom on the other. Structure extension involves both N-H...O hydrogen bonds to both carboxyl and nitro O-atom acceptors. With structure (II), the primary inter-species interactions and structure extension into layers lying parallel to (0 0 1) are through conjoined cyclic hydrogen-bonding motifs: R3/4(10) [one cation, a carboxyl (O,O') group and two water molecules] and centrosymmetric R2/4(8) [two cations and two water molecules]. The structure of (III) also has conjoined R3/4(10) and centrosymmetric R2/4(8) motifs in the layered structure but these differ in that he first involves one cation, a carboxyl (O,O') as well as a carboxyl (O) group and one water molecule, the second, two cations and two carboxyl O-groups. The layers lie parallel to (1 0 0). The structures of the salt hydrates (II) and (III) reported in this work, giving two-dimensional layered arrays through conjoined hydrogen-bonded nets provide further illustrations of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three-dimensional structure of (I) is inconsistent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigel™, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release-akin to its role in vesicle formation-and is not restricted to severing the thin membrane tether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimisation of organic Rankine cycles(ORCs for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. Thispaper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, therefrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate R143a radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state.The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new protein microarray (Immuno-Flow Protein Platform, IFPP) that utilizes a porous nitrocellulose (NC) membrane with printed spots of capture probes. The sample is pumped actively through the NC membrane, to enhance binding efficiency and introduce stringency. Compared to protein microarrays assayed with the conventional incubation-shaking method the rate of binding is enhanced on the IFPP by at least a factor of 10, so that the total assay time can be reduced drastically without compromising sensitivity. Similarly, the sensitivity can be improved. We demonstrate the detection of 1 pM of C-reactive protein (CRP) in 70 mu L of plasma within a total assay time of 7 min. The small sample and reagent volumes, combined with the speed of the assay, make our IFPP also well-suited for a point-of-care/near-patient setting. The potential clinical application of the IFPP is demonstrated by validating CRP detection both in human plasma and serum samples against standard clinical laboratory methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.