901 resultados para third-order non-linearity
Resumo:
We present an experimental demonstration of the interaction between the intrinsic second- and third-order optical fields in an Al0.53Ga0.47N/GaN heterostructure. The sample was deposited by metal-organic chemical vapor deposition on (0001) sapphire. The nonlinear optical coefficients of the sample, which were measured with a Mach-Zehnder interferometer system, quadratically increase with the applied modulating voltage, indicating the existence of the third-order optical field. The third-order signal was then detected by the Z-scan method and we calculated the built-in dc field on the AlGaN/GaN interface to confirm the strong interaction between the intrinsic second- and third-order optical fields. (c) 2008 American Institute of Physics.
Resumo:
(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Interfacial internal waves in a three-layer density-stratified fluid are investigated using a singular method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. as expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interfacial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
Resumo:
We address the problem of non-linearity in 2D Shape modelling of a particular articulated object: the human body. This issue is partially resolved by applying a different Point Distribution Model (PDM) depending on the viewpoint. The remaining non-linearity is solved by using Gaussian Mixture Models (GMM). A dynamic-based clustering is proposed and carried out in the Pose Eigenspace. A fundamental question when clustering is to determine the optimal number of clusters. From our point of view, the main aspect to be evaluated is the mean gaussianity. This partitioning is then used to fit a GMM to each one of the view-based PDM, derived from a database of Silhouettes and Skeletons. Dynamic correspondences are then obtained between gaussian models of the 4 mixtures. Finally, we compare this approach with other two methods we previously developed to cope with non-linearity: Nearest Neighbor (NN) Classifier and Independent Component Analysis (ICA).
Resumo:
We consider two interlinked non-linear interactions occurring simultaneously in a single chi((2)) crystal. Classical and quantum working regimes are considered and their peculiar properties analysed. In particular, we describe an experiment, realized in the classical regime, that verifies the holographic nature of the process, and predict, for the quantum regime, the generation of a fully inseparable tripartite Gaussian state of light that can be used to support a general 1--> 2 continuous variable telecloning protocol.
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36 x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104 oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
Third order nonlinear susceptibility χ(3) and second hyperpolarizability (γ) of a bis-naphthalocyanine viz. europium naphthalocyanines, Eu(Nc)2, were measured in dimethyl formamide solution using degenerate four wave mixing at 532 nm under nanosecond pulse excitation. Effective nonlinear absorption coefficient, βeff and imaginary part of nonlinear susceptibility, Im(χ(3)) were obtained using open aperture /Z-scan technique at the same wavelength. Optical limiting property of the sample was also investigated. The role of excited state absorption in deciding the nonlinear properties of this material is discussed.
Resumo:
Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.
Resumo:
Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.
Resumo:
We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been able to give an estimation of the value of a fourth-order elastic constants combination. The experiments have also shown that the application of a stress in the [001] direction, reduces the material resistance to a (110)[110] shear and thus favors the martensitic transition.
Resumo:
In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.