959 resultados para third-order non-linearity
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Complexity has long been recognized and is increasingly becoming mainstream in geomorphology. However, the relative novelty of various concepts and techniques associated to it means that ambiguity continues to surround complexity. In this commentary, we present and discuss a variety of recent contributions that have the potential to help clarify issues and advance the use of complexity in geomorphology.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
A numerical model for shoaling and refraction of third-order Stokes waves over an irregular bottom /
Resumo:
"May 1987."
Resumo:
Includes bibliographical references and index.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We (Vision Research 38 (1998) 2108) have previously shown how such distortions in perceived edge blur may be accounted for by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. If the form of the transducer is fixed (independent of contrast) for a given speed, then a strong prediction of the model is that motion sharpening should increase with increasing contrast. We measured the sharpening of periodic patterns over a large range of contrasts, blur widths and speeds. The results indicate that whilst sharpening increases with speed it is practically invariant with contrast. The contrast invariance of motion sharpening is not explained by an early, static compressive non-linearity alone. However, several alternative explanations are also inconsistent with these results. We show that if a dynamic contrast gain control precedes the static non-linear transducer then motion sharpening, its speed dependence, and its invariance with contrast, can be predicted with reasonable accuracy. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
We present a novel tunable dispersion compensator that can provide pure slope compensation. The approach uses two specially designed complex fiber Bragg gratings (FBGs) with reversely varied third-order group delay curves to generate the dispersion slope. The slope can be changed by adjusting the relative wavelength positions of the two FBGs. Several design examples of such complex gratings are presented and discussed. Experimentally, we achieve a dispersion slope tuning range of +/-650ps/nm2 with >0.9nm usable bandwidth.
Resumo:
We develop a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrodinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Third-order intermodulation products generated on transmission through nonlinear radio-on-fibre link
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.