953 resultados para thermal stress
Resumo:
Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
The thermal stress problem of a circular hole in a spherical shell of uniform thickness is solved by using a continuum approach. The influence of the hole is assumed to be confined to a small region around the opening. The thermal stress problem is converted as usual to an equivalent boundary value problem with forces specified around the cutout. The stresses and displacement are obtained for a linear variation of temperature across the thickness of the shell and presented in graphical form for ready use.
Resumo:
A method of determining the thermal stresses in a flat rectangular isotropic plate of constant thickness with arbitrary temperature distribution in the plane of the plate and with no variation in temperature through the thickness is presented. The thermal stress have been obtained in terms of Fourier series and integrals that satisfy the differential equation and the boundary conditions. Several examples have been presented to show the application of the method.
Resumo:
A thermal stress problem of a spherical shell with a conical nozzle is solved using a continuum approach. The thermal loading consists of a steady temperature which is uniform on the inner and outer surfaces of the shell and the conical nozzle but may vary linearly across the thickness. The thermal stress problem is converted to an equivalent boundary value problem and boundary conditions are specified at the junction of the spherical shell and conical nozzle. The stresses are obtained for a uniform increase in temperature and for a linear variation of temperature across the thickness of the shell, and are presented in graphical form for ready use.
Resumo:
A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
SU8-based micromechanical structures are widely used as thermal actuators in the development of compliant micromanipulation tools. This paper reports the design, nonlinear thermomechanical analysis, fabrication, and thermal actuation of SU8 actuators. The thermomechanical analysis of the actuator incorporates nonlinear temperature-dependent properties of SU8 polymer to accurately model its thermal response during actuation. The designed SU8 thermal actuators are fabricated using surface micromachining techniques and the electrical interconnects are made to them using flip-chip bonding. The issues due to thermal stress during fabrication are discussed and a novel strategy is proposed to release the thermal stress in the fabricated actuators. Subsequent characterization of the actuator using an optical profilometer reveals excellent thermal response, good repeatability, and low hysteresis. The average deflection is similar to 8.5 mu m for an actuation current of similar to 5 mA. The experimentally obtained deflection profile and the tip deflection at different currents are both shown to be in good agreement with the predictions of the nonlinear thermomechanical model. This underscores the need to consider nonlinearities when modeling the response of SU8 thermal actuators. 2015-0087]
Resumo:
The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The damage mechanism of a cracked material due to laser beam thermal shock is an important problem when the interactions of high power laser beam with materials are studied. The transient thermal stress intensity factors (TSIFs) for a center crack in an infinite plate subjected to laser beam thermal shock are investigated. When the crack is in the heat affected zone, the compressive thermal stress causes the crack surface to come into contact with each other over a certain contact length, but the high tensile stresses around the crack tip tend to open the crack. In this case, the problem may be treated as a pair of embedded cracks problem with a smooth closure condition of the center crack. The TSIFs and the crack contact lengths are calculated with different laser beam spatial shapes. The TSIFs induced by thermal shock are in marked different from those induced by general mechanical loading.
Resumo:
The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.
Resumo:
A universal Biot number, which not only describes the susceptibility of ceramic cylinders to quenching but also determines the duration that ceramic cylinders are subjected to thermal stress during thermal shock, is theoretically obtained. The analysis proves that thermal shock failure of ceramic cylinders with a Biot number greater than the critical value is a rapid process, which only occurs in the initial heat conduction regime. The results provide a guide to the selection of ceramic materials for thermostructural engineering, with particular reference to thermal shock.
Resumo:
Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Finite Element Method is used in this article to analyze the stress of CR superferric magnet. Magnetic force and the stress caused by this force are calculated. The thermal stress and strain of the coil caused by cooling down is also analyzed. The result will be taken as a check for the design of the coil and coilcase, and also as a reference for the optimization of further design and quench protection.
Resumo:
The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.
Resumo:
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.