997 resultados para thermal adaptation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates ? in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underground dwellings are the maximum example of the vernacular architecture adaptation to the climatic conditions in areas with high annual and daily thermal fluctuations. This paper summarizes the systematic research about the energy performance of this popular architecture and their adaptation to the outdoor conditions in the case of the low area of the River Tajuña and its surroundings. Some considerations on their maintenance and renovation arise from the research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. We examined the effect of thermal acclimation on fighting success and underlying performance traits in the crayfish Cherax destructor. We tested the hypothesis that animals will be more successful when fighting at their acclimation temperature than at a colder or warmer temperature, and that changes in metabolic capacity underlie differences in behavioural performance. 2. Thermal acclimation (to 20 degrees C and to 30 degrees C) had a significant effect on behavioural contests, and the likelihood of winning was significantly greater when individuals fought at their acclimation temperature against an individual from an alternate acclimation temperature. 3. The ratio of ADP stimulated respiration to proton leak (respiratory control ratio) of isolated mitochondria increased significantly in chelae muscle of the cold-acclimated group, and differences in respiratory control ratio between winners and losers were significantly correlated with the outcome of agonistic encounters. However, acclimation did not affect tall muscle mitochondria or the activity of pyruvate kinase in either chelae or tail muscle. 4. The force produced by closing chelae was thermally insensitive within acclimation groups, and there were no significant differences between acclimation treatments. None the less, differences in chelae width between contestants were significantly correlated with the outcome of agonistic encounters, but this perceived resource holding power did not reflect the actual power of force production. 5. Thermal acclimation in C destructor has beneficial consequences for dominance and competitive ability, and the success of cold acclimated animals at the cold temperatures can be at least partly explained by concomitant up-regulation of oxidative ATP production capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a simplified implementation of the Hoshen-Kopelman cluster counting algorithm adapted for honeycomb networks. In our implementation of the algorithm we assume that all nodes in the network are occupied and links between nodes can be intact or broken. The algorithm counts how many clusters there are in the network and determines which nodes belong to each cluster. The network information is stored into two sets of data. The first one is related to the connectivity of the nodes and the second one to the state of links. The algorithm finds all clusters in only one scan across the network and thereafter cluster relabeling operates on a vector whose size is much smaller than the size of the network. Counting the number of clusters of each size, the algorithm determines the cluster size probability distribution from which the mean cluster size parameter can be estimated. Although our implementation of the Hoshen-Kopelman algorithm works only for networks with a honeycomb (hexagonal) structure, it can be easily changed to be applied for networks with arbitrary connectivity between the nodes (triangular, square, etc.). The proposed adaptation of the Hoshen-Kopelman cluster counting algorithm is applied to studying the thermal degradation of a graphene-like honeycomb membrane by means of Molecular Dynamics simulation with a Langevin thermostat. ACM Computing Classification System (1998): F.2.2, I.5.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between reef corals and endosymbiotic dinoflagellates is fundamental to the existence of coral reefs. To evaluate the fidelity of coral-Symbiodinium mutualisms, corals maintained in aquaria for years were analyzed by denaturant gradient gel electrophoresis (DGGE). Comparing Symbiodinium populations of captive aquarium colonies with known associations in nature is a practical way of examining partner flexibility. The finding of "normal" symbiont populations in corals existing under highly variable conditions supports the premise that most coral colonies possess stable associations. High sensitivity real-time PCR (rtPCR) was used to evaluate background populations of the putatively stress-tolerant Symbiodinium D in reef corals of the Caribbean. Analyses of samples collected during periods of environmental stability indicate the ability of Symbiodinium D to associate with a wider diversity of host taxa than previously recognized. To gain a broader perspective with regard to the ecology of Symbiodinium D1a, rtPCR and DGGE were used to evaluate the symbiont populations of reef corals from Barbados before and after the 2005 mass coral bleaching. Background populations were observed in 56% of the host genera prior to observations of bleaching. These findings indicate that 'stress', not 'bleaching', caused the displacement of 'natural' symbiont population and the opportunistic proliferation of D1a in many host taxa. Of the 12 host taxa monitored before and after the bleaching event, there was a 40% increase in colonies hosting Symbiodinium D1a. Together, these studies elucidate the mechanism responsible for recent observations reporting the emergence of Symbiodinium D following thermal disturbances. These observations are now most easily explained as the disproportionate growth of existing in hospite symbiont populations, rather than novel symbiont acquisition subsequent to bleaching. To evaluate the comparative "fitness" of corals able to host multiple symbiont types, rates of calcification were measured in P. verrucosa hosting either Symbiodinium C1b-c or D1 at elevated temperature. Rates of calcification decreased significantly for both host-symbiont combinations, but differences attributable to symbiont composition were not detected. This research improves our knowledge of the symbiosis biology and ecology of reef corals and contributes information necessary to most accurately predict the response of these ecosystems to global climate changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.