999 resultados para technological characterization
Resumo:
Over the past years there has been considerable interest in the growth of single crystals both from the point of view of basic research and technological application. With the revolutionary emergence of solid state electronics which is based on single crystal technolo8Ys basic and applied studies on crystal growth and characterization _have gained a-more significant role in material science. These studies are being carried out for single crystals not only of semiconductor and other electronic materials but also of metals and insulators. Many organic crystals belonging to the orthorhombic class exhibit ferroelectric, electrooptic, triboluminescent and piezoelectric properties. Diammonium Hydrogen Citrate (DAHC) crystals are reported to be piezoelectric and triboluminescent /1/. Koptsik et al. /2/ have reported the piezoelectric nature of Citric Acid Monohydrate (CA) crystals. And since not much work has been done on these crystals, it has been thought useful to grow and characterize these crystals. This thesis presents a study of the growth of these crystals from solution and their defect structures. The results of the microindentation and thermal analysis are presented. Dielectric, fractographic, infrared (IR) and ultraviolet (UV) studies of DAHC crystals are also reported
Resumo:
Since the early days, clays have been used for therapeutic purposes. Nowadays, they are used as active ingredients or as excipient in formulations for a variety of purposes. Despite their wide use, little information is available in literature on their content of trace elements and radionuclides. The purpose of this study was to determine the elements (As, Ba, Br, Cs, Co, Cr, Eu, Fe, Hf, Hg, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Yb, Zn, and Zr) and the radionuclides ((238)U, (232)Th, (226)Ra, (228)Ra, (210)Pb and (40)K) in Brazilian clays as well as the health and radiological implications of the use of these clays in pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.
Resumo:
In recent times, increasing attention has been paid to the use of renewable resources particularly of plant origin keeping in view the ecological concerns, renewability and many governments passing laws for the use of such materials. On the other hand, despite abundant availability of lignocellulosic materials in Brazil, very few attempts have been made about their utilization, probably due to lack of sufficient structure/property data. Systematic studies to know their properties and morphology may bridge this gap while leading to value addition to these natural materials. Chemical composition, X-ray powder diffraction, and morphological studies and thermal behavior aspects in respect of banana, sugarcane bagasse sponge gourd fibers of Brazilian origin are presented. Chemical compositions of the three fibers are found to be different than those reported earlier. X-ray diffraction patterns of these three fibers exhibit mainly cellulose type I structure with the crystallinity indices of 39%, 48% and 50% respectively for these fibers. Morphological studies of the fibers revealed different sizes and arrangement of cells. Thermal stability of all the fibers is found to be around 200 degrees C. Decomposition of both cellulose and hemicelluloses in the fibers takes place at 300 degrees C and above, while the degradation of fibers takes place above 400 degrees C. These data may help finding new uses for these fibers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.
Resumo:
O trabalho teve como objetivo a caracterização físico-química de frutos de mangostão amarelo (Garcinia xanthochymus Hook). Seis amostras de 25 frutos cada foram colhidas em plantas de mangostão amarelo do Banco Ativo de Germoplasma da Universidade Estadual Paulista e caracterizadas pela avaliação de diâmetro e altura, peso, percentagem e número de sementes por fruto, percentagem de casca, percentagem de polpa, sólidos solúveis (SS), acidez titulável (AT), vitamina C e relação SS/AT. O mangostão amarelo tem boas qualidades tecnológicas e é uma fonte intermediária de vitamina C com conteúdo médio de 120,33 mg/100g de fruta fresca.
Resumo:
The contribution of new materials, involving composites and blends, has been reaching the most varied fields of science, as much of the scientific as technological point of view. This is due to the man's needs in applications, especially in medicine areas. Thus, this work shows the preparation and characterization of poly(vinylidene fluoride) (PVDF) and calcium carbonate (CaCO3) Composite films in order to analyse the incorporation of CaCO3 in PVDF for future application in bony restoration and bony filling. The films were prepared by casting method, where the PVDF pellet shape was dissolved in dimethylacetamide (DMA) and in a separate container CaCO3/DMA emulsion was also made. Soon afterwards they were mixed in several proportions 100/00, 95/05, 85/15, 70/30 in weight and left to dry in greenhouse. Homogeneous and flexible films were obtained and structurally characterized by attenuated total reflection infrared spectroscopy (FT-IR/ATR), thermal analyses (DSC, TGA), X-ray diffractometry, optical and scanning electron microscopies. The results showed that the material was a composite with good thermal stability until around 400 degrees C, the crystallinity of PVDF was non-polar alpha-phase and the obtained films were porous, being these filled with CaCO3. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Natural gums have been traditionally applied in cosmetics and the food industry, mainly as emulsification agents. Due to their biodegradability and excellent mechanical properties, new technological applications have been proposed involving their use with conventional polymers forming blends and composites. In this study, we take advantage of the polyelectrolyte character exhibited by the natural gum Chicha (Sterculia striata), extracted in the Northeastern region of Brazil, to produce electroactive nanocomposites. The nanocomposites were fabricated in the form of ultrathin films by combining a metallic phthalocyanine (nickel tetrasulfonated phthalocyanine, NiTsPc) and the Chicha gum in a tetralayer architecture, in conjunction with conventional polyelectrolytes. The presence of the gum led to an efficient adsorption of the phthalocyanine and enhanced the electrochemical response of the films. Upon combining the electrochemical and UV-vis absorption data, energy diagrams of the Chicha/NiTsPc-based system were obtained. Furthermore, modified electrodes based on gum/phthalocyanine films were able to detect dopamine at concentrations as low as 10(-5) M.
Resumo:
The demand for petroleum has been rising rapidly due to increasing industrialization and modernization. This economic development has led to a huge demand for energy, most of which is derived from fossil fuel. However, the limited reserve of fossil fuel has led many researchers to look for alternative fuels which can be produced from renewable feedstock. Increasing fossil fuel prices have prompted the global oil industry to look at biodiesel, which is from renewable energy sources. Biodiesel is produced from animal fats and vegetable oils and has become more attractive because it is more environmentally friendly and is obtained from renewable sources. Glycerol is the main by-product of biodiesel production; about 10% of the weight of biodiesel is generated in glycerol. The large amount of glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. In this paper, an attempt has been made to review the different approaches and techniques used to produce glycerol (hydrolysis, transesterification, refining crude glycerol). The world biodiesel/glycerol production and consumption market, the current world glycerin and glycerol prices as well as the news trends for the use of glycerol mainly in Brazil market are analyzed. The technological production and physicochemical properties of glycerol are described, as is the characterization of crude glycerol obtained from different seed oil feedstock. Finally, a simple way to use glycerol in large amounts is combustion, which is an advantageous method as it does not require any purification. However, the combustion process of crude glycerol is not easy and there are technological difficulties. The news and mainly research about the combustion of glycerol was also addressed in this review. © 2013 Elsevier Ltd.
Resumo:
A castanha-do-Brasil (Bertholletia excelsea H. B. K.) destaca-se por seus elevados teores em lipídios e proteínas de alta qualidade biológica, parâmetros que justificam a necessidade de maiores pesquisas e incentivos para a elaboração de novos produtos comerciais. No presente estudo, busca-se identificar novas formas de aproveitamento tecnológico dessas amêndoas pela indústria alimentícia, através de seu processamento sobre a forma de farinha sem alteração do teor energético. Os resultados após sua elaboração mostraram um produto com alto valor energético 431,48 kcal.100 g–1, teor de proteína de 45,92 g.100 g–1 e fibra alimentar de 17,14%. As análises térmicas indicam que a introdução de outro componente proteico, como o isolado proteico de soja, não altera as reações e comportamentos térmicos. Já as morfológicas evidenciaram estruturas granulares semelhantes à estrutura das matrizes de proteínas globulares. Constata-se que, após o processamento e obtenção de farinha, o produto mantém seu alto teor energético-proteico e, ao ser submetido a altas temperaturas, mantém suas características.
Resumo:
O objetivo deste trabalho foi elaborar um produto matinal extrusado de quirera de arroz e bandinha de feijão, além de verificar a influência do processo de extrusão nas suas características físico-químicas, nutricionais, tecnológicas e sensoriais. O produto final apresentou teor considerável de proteínas (9,9 g.100 g-1), podendo ser considerado uma boa fonte desse nutriente para crianças e adolescentes. Para a fibra alimentar, observou-se teor de 3,71 g.100 g-1 do produto pronto para o consumo. Dessa forma, o floco matinal de arroz e feijão pode receber a alegação de alimento fonte de fibras, de acordo com a legislação brasileira. Com relação às propriedades tecnológicas, o extrusado estudado apresentou índice de expansão de 8,89 e densidade aparente de 0,25 g.cm-3. Quanto à análise sensorial, o floco matinal avaliado obteve notas médias de aceitação, situadas no intervalo de 6,8 a 7,7, que corresponde às categorias "gostei ligeiramente" e "gostei muito". Para a intenção de compra, 79% dos provadores opinaram que certamente ou possivelmente comprariam o produto. O emprego de quirera de arroz e bandinha de feijão é uma interessante alternativa para a elaboração de produto matinal extrusado, apresentando boas qualidades de ordem nutricional, tecnológica e sensorial.
Resumo:
The use of bamboo as construction and raw material for producing products can be considered a feasible alternative to the abusive use of steel, concrete and oil byproducts. Its use can also reduce the pressure on the use of wood from native and planted forests. Although there are thousands of bamboo species spread about the world and Brazil itself has hundreds of native species, the use and basic knowledge of its characteristics and applications are still little known and little disseminated. This paper's main objective is to introduce the species, the management phases, the physical and mechanical characteristics and the experiences in using bamboo in design and civil construction as per the Bamboo Project implemented at UNESP, Bauru campus since 1994. The results are divided into: a) Field activities - description of the technological species of interest, production chain flows, types of preservative treatments and clump management practices for the development, adaptation and production of different species of culms; b) Lab experiments - physical and mechanical characterization of culms processed as laminated strips and as composite material (glue laminated bamboo – glubam); c) Uses in projects - experiences with natural bamboo and glubam in design, architecture and civil construction projects. In the final remarks, the study aims to demonstrate, through practical and laboratory results, the material's multi-functionality and the feasibility in using bamboo as a sustainable material.