900 resultados para system dynamics analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the criticism that system dynamics is a ‘hard’ or ‘deterministic’ systems approach. This criticism is seen to have four interpretations and each is addressed from the perspectives of social theory and systems science. Firstly, system dynamics is shown to offer not prophecies but Popperian predictions. Secondly, it is shown to involve the view that system structure only partially, not fully, determines human behaviour. Thirdly, the field's assumptions are shown not to constitute a grand content theory—though its structural theory and its attachment to the notion of causality in social systems are acknowledged. Finally, system dynamics is shown to be significantly different from systems engineering. The paper concludes that such confusions have arisen partially because of limited communication at the theoretical level from within the system dynamics community but also because of imperfect command of the available literature on the part of external commentators. Improved communication on theoretical issues is encouraged, though it is observed that system dynamics will continue to justify its assumptions primarily from the point of view of practical problem solving. The answer to the question in the paper's title is therefore: on balance, no.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the social theories implicit in system dynamics (SD) practice. Groupings of SD practice are observed in different parts of a framework for studying social theories. Most are seen to be located within `functionalist sociology'. To account for the remainder, two new forms of practice are discussed, each related to a different paradigm. Three competing conclusions are then offered: 1. The implicit assumption that SD is grounded in functionalist sociology is correct and should be made explicit. 2. Forrester's ideas operate at the level of method not social theory so SD, though not wedded to a particular social theoretic paradigm, can be re-crafted for use within different paradigms. 3. SD is consistent with social theories which dissolve the individual/society divide by taking a dialectical, or feedback, stance. It can therefore bring a formal modelling approach to the `agency/structure' debate within social theory and so bring SD into the heart of social science. The last conclusion is strongly recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background  In order to facilitate the collaborative design, system dynamics (SD) with a group modelling approach was used in the early stages of planning a new stroke unit. During six workshops a SD model was created in a multiprofessional group. Aim To explore to which extent and how the use of system dynamics contributed to the collaborative design process. Method A case study was conducted using several data sources. Results SD supported a collaborative design, by facilitating an explicit description of stroke care process, a dialogue and a joint understanding. The construction of the model obliged the group to conceptualise the stroke care and experimentation with the model gave the opportunity to reflect on care. Conclusion SD facilitated the collaborative design process and should be integrated in the early stages of the design process as a quality improvement tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis introduces a system dynamics Taylor rule model of new Keynesian nature for monetary policy feedback in Brazil. The nonlinear Taylor rule for interest rate changes con-siders gaps and dynamics of GDP growth and inflation. The model closely tracks the 2004 to 2011 business cycle and outlines the endogenous feedback between the real interest rate, GDP growth and inflation. The model identifies a high degree of endogenous feedback for monetary policy and inflation, while GDP growth remains highly exposed to exogenous eco-nomic conditions. The results also show that the majority of the monetary policy moves during the sample period was related to GDP growth, despite higher coefficients of inflation parameters in the Taylor rule. This observation challenges the intuition that inflation target-ing leads to a dominance of monetary policy moves with respect to inflation. Furthermore, the results suggest that backward looking price-setting with respect to GDP growth has been the dominant driver of inflation. Moreover, simulation exercises highlight the effects of the new BCB strategy initiated in August 2011 and also consider recession and inflation avoid-ance versions of the Taylor rule. In methodological terms, the Taylor rule model highlights the advantages of system dynamics with respect to nonlinear policies and to the stock-and-flow approach. In total, the strong historical fit and some counterintuitive observations of the Taylor rule model call for an application of the model to other economies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.