963 resultados para synthesis gas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles. Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La gazéification est aujourd'hui l'une des stratégies les plus prometteuses pour valoriser les déchets en énergie. Cette technologie thermo-chimique permet une réduction de 95 % de la masse des intrants et génère des cendres inertes ainsi que du gaz de synthèse (syngaz). Le syngaz est un combustible gazeux composé principalement de monoxyde de carbone (CO), d'hydrogène (H2) et de dioxyde de carbone (CO2). Le syngaz peut être utilisé pour produire de la chaleur et de l'électricité. Il est également la pierre angulaire d'un grand nombre de produits à haute valeur ajoutée, allant de l'éthanol à l'ammoniac et l'hydrogène pur. Les applications en aval de la production de syngaz sont dictées par son pouvoir calorifique, lui-même dépendant de la teneur du gaz en H2. L’augmentation du contenu du syngaz en H2 est rendu possible par la conversion catalytique à la vapeur d’eau, largement répandu dans le cadre du reformage du méthane pour la production d'hydrogène. Au cours de cette réaction, le CO est converti en H2 et CO2 selon : CO + H2O → CO2 + H2. Ce processus est possible grâce à des catalyseurs métalliques mis en contact avec le CO et de la vapeur. La conversion catalytique à la vapeur d’eau a jusqu'ici été réservé pour de grandes installations industrielles car elle nécessite un capital et des charges d’exploitations très importantes. Par conséquent, les installations de plus petite échelle et traitant des intrants de faible qualité (biomasse, déchets, boues ...), n'ont pas accès à cette technologie. Ainsi, la seule utilisation de leur syngaz à faible pouvoir calorifique, est limitée à la génération de chaleur ou, tout au plus, d'électricité. Afin de permettre à ces installations une gamme d’application plus vaste de leurs syngaz, une alternative économique à base de catalyseur biologique est proposée par l’utilisation de bactéries hyperthermophiles hydrogénogènes. L'objectif de cette thèse est d'utiliser Carboxydothermus hydrogenoformans, une bactérie thermophile carboxydotrophe hydrogénogène comme catalyseur biologique pour la conversion du monoxyde de carbone en hydrogène. Pour cela, l’impact d'un phénomène de biominéralisation sur la production d’H2 a été étudié. Ensuite, la faisabilité et les limites de l’utilisation de la souche dans un bioréacteur ont été évaluées. Tout d'abord, la caractérisation de la phase inorganique prédominante lorsque C. hydrogenoformans est inoculé dans le milieu DSMZ, a révélé une biominéralisation de phosphate de calcium (CaP) cristallin en deux phases. L’analyse par diffraction des rayons X et spectrométrie infrarouge à transformée de Fourier de ce matériau biphasique indique une signature caractéristique de la Mg-whitlockite, alors que les images obtenues par microscopie électronique à transmission ont montré l'existence de nanotiges cristallines s’apparentant à de l’hydroxyapatite. Dans les deux cas, le mode de biominéralisation semble être biologiquement induit plutôt que contrôlé. L'impact du précipité de CaP endogène sur le transfert de masse du CO et la production d’H2 a ensuite été étudié. Les résultats ont été comparés aux valeurs obtenues dans un milieu où aucune précipitation n'est observée. Dans le milieu DSMZ, le KLa apparent (0.22 ± 0.005 min-1) et le rendement de production d’H2 (89.11 ± 6.69 %) étaient plus élevés que ceux obtenus avec le milieu modifié (0.19 ± 0.015 min-1 et 82.60 ± 3.62% respectivement). La présence du précipité n'a eu aucune incidence sur l'activité microbienne. En somme, le précipité de CaP offre une nouvelle stratégie pour améliorer les performances de transfert de masse du CO en utilisant les propriétés hydrophobes de gaz. En second lieu, la conversion du CO en H2 par la souche Carboxydothermus hydrogenoformans fut étudiée et optimisée dans un réacteur gazosiphon de 35 L. Parmi toutes les conditions opérationnelles, le paramètre majeur fut le ratio du débit de recirculation du gaz sur le débit d'alimentation en CO (QR:Qin). Ce ratio impacte à la fois l'activité biologique et le taux de transfert de masse gaz-liquide. En effet, au dessus d’un ratio de 40, les performances de conversion du CO en H2 sont limitées par l’activité biologique alors qu’en dessous, elles sont limitées par le transfert de masse. Cela se concrétise par une efficacité de conversion maximale de 90.4 ± 0.3 % et une activité spécifique de 2.7 ± 0.4 molCO·g–1VSS·d–1. Malgré des résultats prometteurs, les performances du bioréacteur ont été limitées par une faible densité cellulaire, typique de la croissance planctonique de C. hydrogenoformans. Cette limite est le facteur le plus contraignant pour des taux de charge de CO plus élevés. Ces performances ont été comparées à celles obtenues dans un réacteur à fibres creuses (BRFC) inoculé par la souche. En dépit d’une densité cellulaire et d’une activité volumétrique plus élevées, les performances du BRFC à tout le moins cinétiquement limitées quand elles n’étaient pas impactées par le transfert de masse, l'encrassement et le vieillissement de la membrane. Afin de parer à la dégénérescence de C. hydrogenoformans en cas de pénurie de CO, la croissance de la bactérie sur pyruvate en tant que seule source de carbone a été également caractérisée. Fait intéressant, en présence simultanée de pyruvate et de CO, C. hydrogenoformans n’a amorcé la consommation de pyruvate qu’une fois le CO épuisé. Cela a été attribué à un mécanisme d'inhibition du métabolisme du pyruvate par le CO, faisant ainsi du pyruvate le candidat idéal pour un système in situ de secours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims at the implementation and adaptation of a computational model for the study of the Fischer-Tropsch reaction in a slurry bed reactor from synthesis gas (CO+H2) for the selective production of hydrocarbons (CnHm), with emphasis on evaluation of the influence of operating conditions on the distribution of products formed during the reaction.The present model takes into account effects of rigorous phase equilibrium in a reactive flash drum, a detailed kinetic model able of predicting the formation of each chemical species of the reaction system, as well as control loops of the process variables for pressure and level of slurry phase. As a result, a system of Differential Algebraic Equations was solved using the computational code DASSL (Petzold, 1982). The consistent initialization for the problem was based on phase equilibrium formed by the existing components in the reactor. In addition, the index of the system was reduced to 1 by the introduction of control laws that govern the output of the reactor products. The results were compared qualitatively with experimental data collected in the Fischer-Tropsch Synthesis plant installed at Laboratório de Processamento de Gás - CTGÁS-ER-Natal/RN

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The updraft biomass gasifiers currently available produce a gas with high tar content. For almost all downstream applications a substantial reduction of the tar concentration is required. The gravimetric tar concentration behavior in producer gas, obtained at a modified updraft fixed bed gasifier, was studied. The feedstock feeding system was modified respect to the traditional updraft gasification design in order to decrease the tar concentration in the producer gas; the material is feeding continuously through a conduit in the base of the reactor over the grate. The caloric power of the syngas obtained was slightly lower than the typical value for this type of reactor and the highest efficiency obtained for the woodchip gasification was 77%. The highest tar concentration obtained during the experiments was 1652.7 mg N m-3 during the first our of experiments, comparable with the smaller value reported for the updraft reactors, this value is reduced significantly after the stabilization of the gasification process in the reactor. The smaller value obtained was 21 mg N m-3. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to develop stoichiometric equilibrium models that permit the study of parameters effect in the gasification process of a particular feedstock. In total four models were tested in order to determine the syngas composition. One of these four models, called M2, was based on the theoretical equilibrium constants modified by two correction factors determined using published experimental data. The other two models, M3 and M4 were based in correlations, while model M4 was based in correlations to determine the equilibrium constants, model M3 was based in correlations that relate the H-2, CO and CO2 content on the synthesis gas. Model M2 proved to be the more accurate and versatile among these four models, and also showed better results than some previously published models. Also a case study for the gasification of a blend of hardwood chips and glycerol at 80% and 20% respectively, was performed considering equivalence ratios form 0.3 to 0.5, moisture contents from 0%-20% and oxygen percentages in the gasification agent of 100%, 60% and 21%. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to make a qualitatively and ecologically evaluation of a compact cogeneration system that operates with synthesis gas obtained from a gasifier. Using the Eucalyptus Biomass as fuel, that passes through a wood gasifier (Drowndraft type) and supply the internal combustion engine. The compact cogeneration system is composed of two heat exchangers, an energy generator connected to an internal combustion engine and an absorption refrigeration system. The complete system is installed in the laboratory from the Energy Department at the University of Guaratinguetá. By the analysis related to the First and Second Thermodynamic Laws applied in this system, was possible to identify the mass flows in each point, energetic efficiency, irreversibility and exergetic efficiency. The components that have the biggest irreversibilities are the gasifier, followed by the internal combustion engine, which should be focused in future improvements. The system efficiency in energetic basis is 51,84% and in exergetic basis is 22,78%. Using the ecologic efficiency methodology was possible to identify the emissions rates, the pollution indicator associated to the combustion of the synthesis gas in the internal combustion engine. The ecologic efficiency considering the energectic analysis is 91,73%, while considering the exergetic analysis, 83,65%. It is concluded that the use of the synthesis gas in a compact cogeneration system is viable from the technical and ecological point of view, making possible to generate energy for isolated communities and promoting the decentralized electricity generation