592 resultados para syndiotactic polystyrene
Resumo:
A theoretical model on the basis of the free-volume concept is presented explaining the temperature dependence of photoinduced birefringence in polystyrene films that contain Disperse Red-1. Birefringence increases with temperature up to 180 K as the free volume for isomerization increases, and then decreases as thermally activated processes dominate. The fast process of birefringence decay has a time constant that increases with temperature at low temperatures, due to the change kin photoisomerization.
Resumo:
This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behavior of polystyrene modified with gold nanoparticle (Au NPs) was investigated in terms of pH-responsive polymer brush. A pH-responsive of modified polymer brush from tethered polystyrene was prepared and used for selective gating transport of anions andcations across the thin-film. An ITO-coated glass electrode was used as substrate and applied to study the switchable permeability of the polymer brush triggered by changes in pH of the aqueous environment. The pH-sensitive behavior of the polymer brush interface has been demonstrated by means of cyclic voltammetry (CV) and Localized Surface Plasmon Resonance (LSPR). CV experiments showed at ph values of 4 and 8 induces swelling and shrinking of the grafted polymer brushes, respectively, and this behavior is fast and reversible. LSPR measurements showed a blue shift of 33 nm in the surface resonance band changes by local pH. The paper brings an easy methodology to fabrication a variety of nanosensors based on the polymer brushes-nanoparticle assemblies. © 2013 by ESG.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical nonmicellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Concentration-dependent pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size, and ratio. The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
What is the intracellular fate of nanoparticles (NPs) taken up by the cells? This question has been investigated for polystyrene NPs of different sizes with a set of molecular biological and biophysical techniques.rnTwo sets of fluorescent NPs, cationic and non-ionic, were synthesized with three different polymerization techniques. Non-ionic particles (132 – 846 nm) were synthesized with dispersion polymerization in an ethanol/water solution. Cationic NPs with 120 nm were synthesized by miniemulsion polymerization Particles with 208, 267 and 603 nm were produced by seeding the 120 nm particle obtained by miniemulsion polymerization with drop-wise added monomer and polymerization of such. The colloidal characterization of all particles showed a comparable amount of the surface groups. In addition, particles were characterized with regard to their size, morphology, solid content, amount of incorporated fluorescent dye and zeta potential. The fluorescent intensities of all particles were measured by fluorescence spectroscopy for calibration in further cellular experiments. rnThe uptake of the NPs to HeLa cells after 1 – 24 h revealed a much higher uptake of cationic NPs in comparison to non-ionic NPs. If the same amount of NPs with different sizes is introduced to the cell, a different amount of particles is present in the cell medium, which complicates a comparison of the uptake. The same conclusion is valid for the particles’ overall surface area. Therefore, HeLa cells were incubated with the same concentration, amount and surface area of NPs. It was found that with the same concentration always the same polymer amount is taking up by cells. However, the amount of particles taken up decreases for the biggest. A correlation to the surface area could not be found. We conclude that particles are endocytosed by an excavator-shovel like mechanism, which does not distinguish between different sizes, but is only dependent on the volume that is taken up. For the decreased amount of large particles, an overload of this mechanism was assumed, which leads to a decrease in the uptake. rnThe participation of specific endocytotic processes has been determined by the use of pharmacological inhibitors, immunocytological staining and immunofluorescence. The uptake of NPs into the endo-lysosomal machinery is dominated by a caveolin-mediated endocytosis. Other pathways, which include macropinocytosis and a dynamin-dependent mechanism but exclude clathrin mediated endocytosis, also occur as competing processes. All particles can be found to some extent in early endosomes, but only bigger particles were proven to localize in late endosomes. No particles were found in lysosomes; at least not in lysosomes that are labeled with Lamp1 and cathepsin D. However, based on the character of the performed experiment, a localization of particles in lysosomes cannot be excluded.rnDuring their ripening process, vesicles undergo a gradual acidification from early over late endosomes to lysosomes. It is hypothesized that NPs in endo-lysosomal compartments experience the same change in pH value. To probe the environmental pH of NPs after endocytosis, the pH-sensitive dye SNARF-4F was grafted onto amino functionalized polystyrene NPs. The pH value is a ratio function of the two emission wavelengths of the protonated and deprotonated form of the dye and is hence independent of concentration changes. The particles were synthesized by the aforementioned miniemulsion polymerization with the addition of the amino functionalized copolymer AEMH. The immobilization of SNARF-4F was performed by an EDC-coupling reaction. The amount of physically adsorbed dye in comparison to covalently bonded dye was 15% as determined by precipitation of the NPs in methanol, which is a very good solvent for SNARF-4F. To determine influences of cellular proteins on the fluorescence properties, a intracellular calibration fit was established with platereader measurements and cLSM imaging by the cell-penetrable SNARF-4F AM ester. Ionophores equilibrated the extracellular and intracellular pH.rnSNARF-4F NPs were taken up well by HeLa cells and showed no toxic effects. The pH environment of SNARF-4F NPs has been qualitatively imaged as a movie over a time period up to 1 h in pseudo-colors by a self-written automated batch program. Quantification revealed an acidification process until pH value of 4.5 over 24 h, which is much slower than the transport of nutrients to lysosomes. NPs are present in early endosomes after min. 1 h, in late endosomes at approx. 8 h and end up in vesicles with a pH value typical for lysosomes after > 24 h. We therefore assume that NPs bear a unique endocytotic mechanism, at least with regards to the kinetic involvedrn