992 resultados para symmetric distribution
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper we introduce a new extension for the Birnbaum-Saunder distribution based on the family of the epsilon-skew-symmetric distributions studied in Arellano-Valle et al. (J Stat Plan Inference 128(2):427-443, 2005). The extension allows generating Birnbaun-Saunders type distributions able to deal with extreme or outlying observations (Dupuis and Mills, IEEE Trans Reliab 47:88-95, 1998). Basic properties such as moments and Fisher information matrix are also studied. Results of a real data application are reported illustrating good fitting properties of the proposed model.
Resumo:
We present simple matrix formulae for corrected score statistics in symmetric nonlinear regression models. The corrected score statistics follow more closely a chi (2) distribution than the classical score statistic. Our simulation results indicate that the corrected score tests display smaller size distortions than the original score test. We also compare the sizes and the powers of the corrected score tests with bootstrap-based score tests.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
In this article, we study some results related to a specific class of distributions, called skew-curved-symmetric family of distributions that depends on a parameter controlling the skewness and kurtosis at the same time. Special elements of this family which are studied include symmetric and well-known asymmetric distributions. General results are given for the score function and the observed information matrix. It is shown that the observed information matrix is always singular for some special cases. We illustrate the flexibility of this class of distributions with an application to a real dataset on characteristics of Australian athletes.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we consider a class of strong symmetric distributions, which we refer to as the strong c-symmetric distributions. We provide, as the main result of this paper, conditions satisfied by the recurrence relations of certain polynomials associated with these distributions.
Resumo:
We prove a relation between two different types of symmetric quadrature rules, where one of the types is the classical symmetric interpolatory quadrature rules. Some applications of a new quadrature rule which was obtained through this relation are also considered.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
It has been observed in various practical applications that data do not conform to the normal distribution, which is symmetric with no skewness. The skew normal distribution proposed by Azzalini(1985) is appropriate for the analysis of data which is unimodal but exhibits some skewness. The skew normal distribution includes the normal distribution as a special case where the skewness parameter is zero. In this thesis, we study the structural properties of the skew normal distribution, with an emphasis on the reliability properties of the model. More specifically, we obtain the failure rate, the mean residual life function, and the reliability function of a skew normal random variable. We also compare it with the normal distribution with respect to certain stochastic orderings. Appropriate machinery is developed to obtain the reliability of a component when the strength and stress follow the skew normal distribution. Finally, IQ score data from Roberts (1988) is analyzed to illustrate the procedure.
Resumo:
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Resumo:
We consider in this thesis the problem of information reconciliation in the context of secret key distillation between two legitimate parties. In some scenarios of interest this problem can be advantageously solved with low density parity check (LDPC) codes optimized for the binary symmetric channel. In particular, we demonstrate that our method leads to a significant efficiency improvement, with respect to earlier interactive reconciliation methods. We propose a protocol based on LDPC codes that can be adapted to changes in the communication channel extending the original source. The efficiency of our protocol is only limited by the quality of the code and, while transmitting more information than needed to reconcile Alice’s and Bob’s sequences, it does not reveal any more information on the original source than an ad-hoc code would have revealed.---ABSTRACT---En esta tesis estudiamos el problema de la reconciliación de información en el contexto de la destilación de secreto entre dos partes. En algunos escenarios de interés, códigos de baja densidad de ecuaciones de paridad (LDPC) adaptados al canal binario simétrico ofrecen una buena solución al problema estudiado. Demostramos que nuestro método mejora significativamente la eficiencia de la reconciliación. Proponemos un protocolo basado en códigos LDPC que puede ser adaptado a cambios en el canal de comunicaciones mediante una extensión de la fuente original. La eficiencia de nuestro protocolo está limitada exclusivamente por el código utilizado y no revela información adicional sobre la fuente original que la que un código con la tasa de información adaptada habría revelado.
Resumo:
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa una función booleana vectorial se puede inicializar de manera muy flexible mediante diferentes estructuras de datas tales como la Tabla de verdad, la Representación de traza y la Forma algebraica normal entre otras. De esta manera VBF permite evaluar los criterios criptográficos más relevantes de los algoritmos de cifra en bloque y de stream, así como funciones hash: por ejemplo, proporciona la no-linealidad, la distancia lineal, el grado algebraico, las estructuras lineales, la distribución de frecuencias de los valores absolutos del espectro Walsh o del espectro de autocorrelación, entre otros criterios. Adicionalmente, VBF puede llevar a cabo operaciones entre funciones booleanas vectoriales tales como la comprobación de igualdad, la composición, la inversión, la suma, la suma directa, el bricklayering (aplicación paralela de funciones booleanas vectoriales como la empleada en el algoritmo de cifra Rijndael), y la adición de funciones coordenada. La tesis también muestra el empleo de la librería VBF en dos aplicaciones prácticas. Por un lado, se han analizado las características más relevantes de los sistemas de cifra en bloque. Por otro lado, combinando VBF con algoritmos de optimización, se han diseñado funciones booleanas cuyas propiedades criptográficas son las mejores conocidas hasta la fecha. ABSTRACT This thesis develops the theoretical foundations and designs an open collection of C++ classes, called VBF, designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This new implementation uses the NTL library from Victor Shoup, adding new modules which complement the existing ones making VBF better suited for cryptography. The fundamental class representing a vector Boolean function can be initialized in a flexible way via several alternative types of data structures such as Truth Table, Trace Representation, Algebraic Normal Form (ANF) among others. This way, VBF allows the evaluation of the most relevant cryptographic criteria for block and stream ciphers as well as for hash functions: for instance, it provides the nonlinearity, the linearity distance, the algebraic degree, the linear structures, the frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, VBF can perform operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions. This thesis also illustrates the use of VBF in two practical applications. On the one hand, the most relevant properties of the existing block ciphers have been analysed. On the other hand, by combining VBF with optimization algorithms, new Boolean functions have been designed which have the best known cryptographic properties up-to-date.