831 resultados para symbolic solving
Resumo:
This study investigated how the interpretation of mathematical problems by Year 7 students impacted on their ability to demonstrate what they can do in NAPLAN numeracy testing. In the study, mathematics is viewed as a culturally and socially determined system of signs and signifiers that establish the meaning, origins and importance of mathematics. The study hypothesises that students are unable to succeed in NAPLAN numeracy tests because they cannot interpret the questions, even though they may be able to perform the necessary calculations. To investigate this, the study applied contemporary theories of literacy to the context of mathematical problem solving. A case study design with multiple methods was used. The study used a correlation design to explore the connections between NAPLAN literacy and numeracy outcomes of 198 Year 7 students in a Queensland school. Additionally, qualitative methods provided a rich description of the effect of the various forms of NAPLAN numeracy questions on the success of ten Year 7 students in the same school. The study argues that there is a quantitative link between reading and numeracy. It illustrates that interpretation (literacy) errors are the most common error type in the selected NAPLAN questions, made by students of all abilities. In contrast, conceptual (mathematical) errors are less frequent amongst more capable students. This has important implications in preparing students for NAPLAN numeracy tests. The study concluded by recommending that increased focus on the literacies of mathematics would be effective in improving NAPLAN results.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities at a Brisbane primary school. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed realworld contexts into effective robotics lessons is recommended.
Resumo:
The process of learning symbolic Arabic digits in early childhood requires that magnitude and spatial information integrates with the concept of symbolic digits. Previous research has separately investigated the development of automatic access to magnitude and spatial information from symbolic digits. However, developmental trajectories of symbolic number knowledge cannot be fully understood when considering components in isolation. In view of this, we have synthesized the existing lines of research and tested the use of both magnitude and spatial information with the same sample of British children in Years 1, 2 and 3 (6-8 years of age). The physical judgment task of the numerical Stroop paradigm (NSP) demonstrated that automatic access to magnitude was present from Year 1 and the distance effect signaled that a refined processing of numerical information had developed. Additionally, a parity judgment task showed that the onset of the Spatial-Numerical Association of Response Codes (SNARC) effect occurs in Year 2. These findings uncover the developmental timeline of how magnitude and spatial representations integrate with symbolic number knowledge during early learning of Arabic digits and resolve inconsistencies between previous developmental and experimental research lines.
Resumo:
This is a methodologically exemplary trial of a population based (universal) approach to preventing depression in young people. The programme used teachers in a classroom setting to deliver cognitive behavioural problem solving skills to a cohort of students. We have little knowledge about “best practice” to prevent depression in adolescence. Classroom-based universal approaches appear to offer advantages in recruitment rates and lack of stigmatisation over approaches that target specific groups of at risk students. Earlier research on a universal school-based approach to preventing depression in adolescents showed promise, but employed mental health professionals to teach cognitive behavioural coping skills in small groups.1 Using such an approach routinely would be economically unsustainable. Spence’s trial, with teachers as facilitators, therefore represents a “real world” intervention that could be routinely disseminated.
Resumo:
Court costs, resource-intensive trials, booming prison populations and the obduracy of recidivism rates all present as ugly excesses of the criminal law adversarial paradigm. To combat these excesses, problem-solving courts have evolved with an edict to address the underlying issues that have caused an individual to commit a crime. When a judge seeks to help a problem-solving court participant deal with issues like addiction, mental health or poverty, they are performing a very different role to that of a judicial officer in the traditional court hierarchy. They are no longer the removed, independent arbiter — a problem-solving court judge steps into the ‘arena’ with the participant and makes active use of their judicial authority to assist in rehabilitation and positive behavioural change. Problem-solving court judges employing the principles of therapeutic jurisprudence appreciate that their interaction with participants can have therapeutic and anti-therapeutic consequences. This article will consider how the deployment of therapeutic measures (albeit with good intention) can lead to the behavioural manifestation of partiality and bias on the part of problem-solving court judges. Chapter III of the Commonwealth Constitution will then be analysed to highlight why the operation and functioning of problem solving courts may be deemed unconstitutional. Part IV of this article will explain how a problem-solving court judge who is not acting impartially or independently will potentially contravene the requirements of the Constitution. It will finally be suggested that judges who possess a high level of emotional intelligence will be the most successful in administering an independent and impartial problem solving court.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.
Resumo:
The Balanced method was introduced as a class of quasi-implicit methods, based upon the Euler-Maruyama scheme, for solving stiff stochastic differential equations. We extend the Balanced method to introduce a class of stable strong order 1. 0 numerical schemes for solving stochastic ordinary differential equations. We derive convergence results for this class of numerical schemes. We illustrate the asymptotic stability of this class of schemes is illustrated and is compared with contemporary schemes of strong order 1. 0. We present some evidence on parametric selection with respect to minimising the error convergence terms. Furthermore we provide a convergence result for general Balanced style schemes of higher orders.
Resumo:
In the context of ambiguity resolution (AR) of Global Navigation Satellite Systems (GNSS), decorrelation among entries of an ambiguity vector, integer ambiguity search and ambiguity validations are three standard procedures for solving integer least-squares problems. This paper contributes to AR issues from three aspects. Firstly, the orthogonality defect is introduced as a new measure of the performance of ambiguity decorrelation methods, and compared with the decorrelation number and with the condition number which are currently used as the judging criterion to measure the correlation of ambiguity variance-covariance matrix. Numerically, the orthogonality defect demonstrates slightly better performance as a measure of the correlation between decorrelation impact and computational efficiency than the condition number measure. Secondly, the paper examines the relationship of the decorrelation number, the condition number, the orthogonality defect and the size of the ambiguity search space with the ambiguity search candidates and search nodes. The size of the ambiguity search space can be properly estimated if the ambiguity matrix is decorrelated well, which is shown to be a significant parameter in the ambiguity search progress. Thirdly, a new ambiguity resolution scheme is proposed to improve ambiguity search efficiency through the control of the size of the ambiguity search space. The new AR scheme combines the LAMBDA search and validation procedures together, which results in a much smaller size of the search space and higher computational efficiency while retaining the same AR validation outcomes. In fact, the new scheme can deal with the case there are only one candidate, while the existing search methods require at least two candidates. If there are more than one candidate, the new scheme turns to the usual ratio-test procedure. Experimental results indicate that this combined method can indeed improve ambiguity search efficiency for both the single constellation and dual constellations respectively, showing the potential for processing high dimension integer parameters in multi-GNSS environment.
Resumo:
Proving security of cryptographic schemes, which normally are short algorithms, has been known to be time-consuming and easy to get wrong. Using computers to analyse their security can help to solve the problem. This thesis focuses on methods of using computers to verify security of such schemes in cryptographic models. The contributions of this thesis to automated security proofs of cryptographic schemes can be divided into two groups: indirect and direct techniques. Regarding indirect ones, we propose a technique to verify the security of public-key-based key exchange protocols. Security of such protocols has been able to be proved automatically using an existing tool, but in a noncryptographic model. We show that under some conditions, security in that non-cryptographic model implies security in a common cryptographic one, the Bellare-Rogaway model [11]. The implication enables one to use that existing tool, which was designed to work with a different type of model, in order to achieve security proofs of public-key-based key exchange protocols in a cryptographic model. For direct techniques, we have two contributions. The first is a tool to verify Diffie-Hellmanbased key exchange protocols. In that work, we design a simple programming language for specifying Diffie-Hellman-based key exchange algorithms. The language has a semantics based on a cryptographic model, the Bellare-Rogaway model [11]. From the semantics, we build a Hoare-style logic which allows us to reason about the security of a key exchange algorithm, specified as a pair of initiator and responder programs. The other contribution to the direct technique line is on automated proofs for computational indistinguishability. Unlike the two other contributions, this one does not treat a fixed class of protocols. We construct a generic formalism which allows one to model the security problem of a variety of classes of cryptographic schemes as the indistinguishability between two pieces of information. We also design and implement an algorithm for solving indistinguishability problems. Compared to the two other works, this one covers significantly more types of schemes, but consequently, it can verify only weaker forms of security.