786 resultados para syllable-timed rhythm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandarin Chinese is based on characters which are syllabic in nature and morphological in meaning. All spoken languages have syllabiotactic rules which govern the construction of syllables and their allowed sequences. These constraints are not as restrictive as those learned from word sequences, but they can provide additional useful linguistic information. Hence, it is possible to improve speech recognition performance by appropriately combining these two types of constraints. For the Chinese language considered in this paper, character level language models (LMs) can be used as a first level approximation to allowed syllable sequences. To test this idea, word and character level n-gram LMs were trained on 2.8 billion words (equivalent to 4.3 billion characters) of texts from a wide collection of text sources. Both hypothesis and model based combination techniques were investigated to combine word and character level LMs. Significant character error rate reductions up to 7.3% relative were obtained on a state-of-the-art Mandarin Chinese broadcast audio recognition task using an adapted history dependent multi-level LM that performs a log-linearly combination of character and word level LMs. This supports the hypothesis that character or syllable sequence models are useful for improving Mandarin speech recognition performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach by which the detrented fluctuation analysis (DFA) method can be used to help diagnose heart failure was demonstrated. DFA was applied to patients suffering from congestive heart failure (CHF) to check correlations between DFA indices and CHF, and determine a correlation between DFA indices and mortality, with a particular attention to the residue parameter, which is a measure of the departure of the DFA from its power law approximation. DFA parameters proved to be useful as a complement to the physiological parameters weber and FE to sort out the patients into three prognostic group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude and frequency of vertical fluctuations of the top of an axisymmetric miscible Boussinesq fountain forms the focus of this work. We present measurements of these quantities for saline-aqueous fountains in uniform quiescent surroundings. Our results span source Froude numbers 0.3 ≤ Fr 0 ≤ 40 and, thereby, encompass very weak, weak, intermediate and forced classes of fountain. We identify distinct scalings, based on known quantities at the fountain source, for the frequency of fountain height fluctuations which collapse our data within bands of Fr0. Notably, our scalings reveal that the (dimensionless) frequency takes a constant value within each band. These results highlight characteristic time scales for the fluctuations which we decompose into a single, physically apparent, length scale and velocity scale within each band. Moreover, within one particular band, spanning source Froude numbers towards the lower end of the full range considered, we identify unexpectedly long-period fluctuations indicating a near balance of inertia and (opposing) buoyancy at the source. Our analysis identifies four distinct classes of fluctuation behaviour (four bands of Fr 0) and this classification matches well with existing classifications of fountains based on rise heights. As such, we show that an analysis of the behaviour of the fountain top alone, rather than the entire fountain, provides an alternative approach to classifying fountains. The similarity of classifications based on the two different methods confirms that the boundaries between classes mark tangible changes in the physics of fountains. For high Fr0 we show that the dominant fluctuations occur at the scale of the largest eddies which can be contained within the fountain near its top. Extending this, we develop a Strouhal number, Strtop, based on experimental measures of the fountain top, defined such that Strtop = 1 would suggest the dominant fluctuations are caused by a continual cycle of eddies forming and collapsing at this largest physical scale. For high- Fr 0 fountains we find Strtop ≈ 0. 9. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric mills were examined from 98 early juvenile Chinese mitten crabs (Eriocheir sinensis) from experimental tanks. Recognizable food items were macrophytes, algae, oligochaetes, and detritus; their percent frequencies of occurrence were 94.6%, 86.5%, 10.7%, and 18.3%, respectively. The crabs had a diet feeding rhythm.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In communication networks such as the Internet, the relationship between packet generation rate and time is similar to a rectangle wavefunction due to the rhythm of humans. Thus, we investigate the traffic dynamics on a network with a rectangle wavepacket generation rate. It is found that the critical delivering capacity parameter beta(c) (which separates the congested phase and the free phase) decreases significantly with the duty cycle r of the rectangle wave for package generation. And, in the congested phase, more collective generation of packets (smaller r) is helpful for decreasing the packet aggregation rate. Moreover, it is found that the congested phase can be divided into two regions, i.e., region1 and region2, where the distributions of queue lengths are nonlinear and linear, respectively. Also, the linear expression for the distribution of queue lengths in region2 is obtained analytically. Our work reveals an obvious effect of the rectangle wave on the traffic dynamics and the queue length distribution in the system, which is of essential interest and may provide insights into the designing of work-rest schedules and routing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under artificial LD cycles (6, 12, 18 L), the elvers of Japanese eel, Anguilla japonica, showed a 24 h cycle of locomotor activity rhythm being most active at light transitions: the eels' activity rose to a primary peak after lights-off, followed by a quiescent period during which they buried into the shelters or lying motionlessly on sand for most of the time, and then reached a secondary peak before lights-on. Elvers could resynchronize their activity rhythm with a new photo cycle within 4 d. Moreover, their activity level at dark phase significantly increased as the light period was prolonged: higher activity levels during shorter dark period. However, the elvers did not display clearly the existence of a circadian rhythm under constant light or dark conditions. The timing of daily activity rhythm evidenced in the Japanese eels may occur through the action of the LD cycles with a weak participation of an endogenous circadian system. In all the LD cycles, over 99% of the activity occurred in the dark phase, indicating that the eels were always nocturnally active no matter what time of day it might be. Under 12 L conditions, the eels' activity level and the time outside sand were significantly elevated both at light and dark phases as temperature increased from 10 similar to 15 to 20 similar to 25 degrees C. The activity rhythm pattern (i.e., two peaks occurring around light transitions) did not apparently change among temperatures. However, in contrast with the primary activity peaks immediately after lights-off at 20 and 25 degrees C, the timing of the primary peaks at 10 and 15 degrees C showed a latency of a few hours following lights-off, indicating the inhibiting effect of low temperature on the eels' activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the non-adoption of an innovation via the concept of hybrid genres, that is digital genres that emerge from a non-digital material precedent. As instances of innovation these are often resisted because they disturb the order of activity and balance of power relations in a given situation, or require users to make conceptual and physical adaptation efforts that they consider too costly. The authors investigate such issues with a case study of the introduction of a hybrid digital genre, ODR or online dispute resolution, in legal practice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.