799 resultados para swd: Motorisches Lernen
Resumo:
Vor dem Hintergrund sich wandelnder (medialer) Lebenswelten von Schülerinnen und Schülern gewinnen Bestimmungsversuche um medienpädagogische Handlungskompetenzen von Lehrpersonen an Bedeutung. Der Erwerb medienpädagogischer Kompetenz, verstanden als dynamisches Zusammenspiel von domänenspezifischem Wissen und anwendungsorientiertem Können, wird in der vorliegenden Arbeit als wesentliches Lernziel der medienpädagogischen (Aus-)Bildung bestimmt. Als ein Weg zur Förderung medienpädagogischer Handlungskompetenz wird von der Autorin auf der Folie konstruktivistischer Vorstellungen über das Lehren und Lernen die Methode der Problemorientierung vorgeschlagen. Im ersten Teil der Arbeit werden Modelle und Konzepte diskutiert, die Bausteine für ein Modell medienpädagogischer Kompetenz liefern. Im zweiten Teil wird eine empirische Untersuchung zum Erwerb medienpädagogischer Handlungskompetenz auf der Basis eines von der Autorin erarbeiteten Modells vorgestellt und die Ergebnisse diskutiert. Eine kompetenztheoretische Annäherung erfolgt auf der Basis zweier Konzepte. Dies sind die Ausführungen zu einem Konzept kommunikativer Kompetenz nach Jürgen Habermas sowie dessen Überführung in die Medienpädagogik durch Dieter Baacke. Ferner wird die rezente bildungspolitische Kompetenzdebatte in Anbindung an Franz E. Weinert analysiert. Es folgt eine Zusammenschau über die methodischen Konzepte zur Erfassung von Kompetenzen in der Erziehungswissenschaft und deren Anwendbarkeit für die medienpädagogische Kompetenzforschung. Die gegenwärtig vorliegenden Entwürfe zu einer inhaltlichen Bestimmung medienpädagogischer Kompetenzen werden besprochen (Sigrid Blömeke, Werner Sesink, International Society for Technology in Education). Im Rekurs auf konstruktivistische lerntheoretische Überlegungen erfährt das problemorientierte Lernen beim Aufbau von Kompetenzen eine enorme Aufwertung. In der Arbeit wird insbesondere den Arbeiten von David Jonassen zu einer konstruktivistisch-instruktionistischen Herangehensweise bei der Gestaltung problemorientierter Lernumgebungen eine große Bedeutung zugesprochen (vgl. auch Ansätze des Goal-based Scenarios/Roger Schank und des Learning by Design/Janet Kolodner). Im zweiten Teil wird die Interventionsstudie im Kontrollgruppendesign vorgestellt. Anhand eines Modells medienpädagogischer Kompetenz, dass auf den Dimensionen Wissen einerseits und Können andererseits basiert, wurden Studierende (n=59) in einem Pre-Posttestverfahren auf diese Dimensionen getestet. Die Studierenden der Interventionsgruppe (n=30) arbeiteten über ein Semester mit einer problemorientierten Lernanwendung, die Studierenden der Kontrollgruppe (n=29) in einem klassischen Seminarsetting. Hauptergebnis der Untersuchung ist es, das die Intervention zu einem messbaren Lernerfolg beim medienpädagogischen Können führte. In der Diskussion der Ergebnisse werden Empfehlungen zur Gestaltung problemorientierter Lernumgebungen formuliert. Die Chancen einer Orientierung an problemorientierten Lernsettings für das Lernen an Hochschulen werden herausgestellt.
Resumo:
Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.
Resumo:
Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.
Resumo:
Als eines der erstaunlichsten Merkmale des algerisch-französischen Unabhängigkeitskriegs 1954-1962 darf die Kombination von militärischer Aufstandsbekämpfung und zivilen Reformprojekten gelten. Diese Verschränkung lässt sich an keinem Aspekt dieses Krieges so deutlich beobachten wie an der französischen Umsiedlungspolitik. Bis zu drei Millionen Menschen wurden während des Krieges von der französischen Armee gewaltsam aus ihren Dörfern vertreiben und in eigens angelegte Sammellager, die «camps de regroupement», umgesiedelt. Was als rein militärische Maßnahme begann, entwickelte sich schnell zu einem gewaltigen ländlichen Entwicklungsprogramm. Durch das Versprechen einer umfassenden Modernisierung aller Lebensbereiche im Schnellverfahren sollten die Insassen der Lager zu loyalen Anhängern des Projekts eines französischen Algeriens gemacht werden. Die «camps de regroupement» lassen sich als Modernisierungslaboratorien beschreiben, in denen sich scheinbar widersprüchliche Elemente wie Entwicklungshilfe mit äußerst rigider Bevölkerungskontrolle und totalitär anmutenden Maßnahmen des social engineering zu einem einzigartigen Ensemble verbanden. [ABSTRACT FROM AUTHOR]