979 resultados para surface stress


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach which combines direct numerical simulation (DNS) with the Lighthill acoustic analogy theory is used to study the potential noise sources during the transition process of a Mach 2.25 flat plate boundary layer. The quadrupole sound sources due to the flow fluctuations and the dipole sound sources due to the fluctuating surface stress are obtained. Numerical results suggest that formation of the high shear layers leads to a dramatic amplification of amplitude of the fluctuating quadrupole sound sources. Compared with the quadrupole sound source, the energy of dipole sound source is concentrated in the relatively low frequency range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the development of cross-hatch grid surface morphology in growing mismatched layers and its effect on ordering growth of quantum dots (QDs). For a 60degrees dislocation (MD), the effective part in strain relaxation is the part with the Burgers vector parallel to the film/substrate interface within its b(edge) component; so the surface stress over a MD is asymmetric. When the strained layer is relatively thin, the surface morphology is cross-hatch grid with asymmetric ridges and valleys. When the strained layer is relatively thick, the ridges become nearly symmetrical, and the dislocations and the ridges inclined-aligned. In the following growth of InAs, QDs prefer to nucleate on top of the ridges. By selecting ultra-thin In0.15Ga0.85As layer (50nm) and controlling the QDs layer at just formed QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical and structural properties of self-organized InAs/GaAs quantum dots (QDs) with InxGa1-xAs or GaAs cover layers grown by molecular beam epitaxy (MBE) have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL) measurements. The TEM and AFM images show that the surface stress of the InAs QDs was suppressed by overgrowth of a InxGa1-xAs covering layer on the top of the QDs and the uniformity of the QDs preserved. PL measurements reveal that red shifts of the PL emission due to the reduction of the surface strain of the InAs islands was observed and the temperature sensitivity of the PL emission energy was suppressed by overgrowth of InxGa1-xAs layers compared to that by overgrowth of GaAs layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gly-Gly-His tripeptide modified microcantilever was developed by carbodiimide attachment of the Gly-Gly-His tripeptide onto a 3-mercaptopropionic acid(MPA) modified gold surface. The interaction of peptide with Cu2+ ion was studied. At a relative high concentration of Cu2+, the cantilever bent toward the gold side initially as the N atom of imidazole ring and carboxyl group in different peptide coordinate with Cu2+, which results in a tensile surface stress. And then the reversed deflection of microcantilever was observed, which implies that the peptide-Cu2+ complex are formed with conformation transition. In another case, i.e., at a relative low concentration Of Cu2+, only the process of conformation transition was observed due to the coordination mode can not be formed initially. The influences of pH and salt concentration of the test solution on the performance of the sensor were studied. The results show that the maximum deflection was obtained at pH 7 and the bonding Of Cu2+ to the Gly-Gly-His tripeptide was inhibited due to the formation Of CuClx2-x.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The twisting growth of a branched polyethylene single crystal formed from the melt was observed directly by means of transmission electron and atomic force miscroscopy. The surface stress asymmetry arising from the asymmetry of the surface-fold structure and, chain tilting resulted in the twisting growth of the single crystals. The handedness of the twisting lamellae was consistent With the chain-tilting direction. When multilayer lamellae piled up in a thicker film, the lamellar twist would be inevitably causing screw dislocations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To obtain the surface stress changes due to the adsorption of metal monolayers onto metallic surfaces, a new model derived from thermodynamic considerations is presented. Such a model is based on continuum Monte Carlo simulations with embedded atom method potentials in the canonical ensemble, and it is extended to consider the behavior on different islands adsorbed onto (111) substrate surfaces. Homoepitaxial and heteroepitaxial systems are studied. Pseudomorphic growth is not observed for small metal islands with considerable positive misfit with the substrate. Instead, the islands become compressed upon increase of their size. A simple model is proposed to interpolate between the misfits of atoms in small islands and the pseudomorphic behavior of the monolayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experiments on Au break junctions [Phys. Rev. Lett. 88 (2002) 216803] have characterized the nonlinear conductance of stretched short Au nanowires. They reveal in the voltage range 10-20 meV the signatures of dissipation effects, likely due to phonons in the nanowire, reducing the conductance below the quantized value of 2e(2)/h. We present here a theory, based on a model tight-binding Hamiltonian and on non-equilibrium Green's function techniques, which accounts for the main features of the experiment. The theory helps in revealing details of the experiment which need to be addressed with a more realistic, less idealized, theoretical framework. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les microcantileviers fonctionnalisés offrent une plateforme idéale pour la nano- et micro-mécanique et pour le développement de (bio-) capteurs tres sensible. Le principe d’opération consiste dans des évènements physicochimiques qui se passent du côté fonctionnalisé du microcantilevier induisant une différence de stress de surface entre les deux côtés du cantilevier qui cause une déflexion verticale du levier. Par contre, les facteurs et les phénomènes interfacials qui régissent la nature et l'intensité du stress de surface sont encore méconnus. Pour éclaircir ce phénomène, la première partie de cette thèse porte sur l'étude des réactions de microcantileviers qui sont recouverts d'or et fonctionnalisés par une monocouche auto-assemblée (MAA) électroactive. La formation d'une MAA de ferrocènylundécanethiol (FcC11SH) à la surface d'or d'un microcantilevier est le modèle utilisé pour mieux comprendre le stress de surface induit par l’électrochimie. Les résultats obtenus démontrent qu'une transformation rédox de la MAA de FcC11SH crée un stress de surface qui résulte dans une déflexion verticale du microcantilevier. Dépendamment de la flexibilité du microcantilevier, cette déflexion peut varier de quelques nanomètres à quelques micromètres. L’oxydation de cette MAA de FcC11SH dans un environnement d'ions perchlorate génère un changement de stress de surface compressive. Les résultats indiquent que la déflexion du microcantilevier est due à une tension latérale provenant d'une réorientation et d'une expansion moléculaire lors du transfért de charge et de pairage d’anions. Pour vérifier cette hypothèse, les mêmes expériences ont été répéteés avec des microcantileviers qui ont été couverts d'une MAA mixte, où les groupements électroactifs de ferrocène sont isolés par des alkylthiols inactifs. Lorsqu’un potentiel est appliqué, un courant est détecté mais le microcantilevier ne signale aucune déflexion. Ces résultats confirment que la déflexion du microcantilevier est due à une pression latérale provenant du ferrocènium qui se réorganise et qui crée une pression sur ses pairs avoisinants plutôt que du couplage d’anions. L’amplitude de la déflexion verticale du microcantilevier dépend de la structure moléculaire de la MAA et du le type d’anion utilisés lors de la réaction électrochimique. Dans la prochaine partie de la thèse, l’électrochimie et la spectroscopie de résonance de plasmon en surface ont été combinées pour arriver à une description de l’adsorption et de l’agrégation des n-alkyl sulfates à l’interface FcC11SAu/électrolyte. À toutes les concentrations de solution, les molécules d'agent tensio-actif sont empilées perpendiculairement à la surface d'électrode sous forme de monocouche condensé entrecroisé. Cependant, la densité du film spécifiquement adsorbé s'est avérée être affectée par l'état d'organisation des agents tensio-actifs en solution. À faible concentration, où les molécules d'agent tensio-actif sont présentes en tant que monomères solvatés, les monomères peuvent facilement s'adapter à l’évolution de la concentration en surface du ferrocènium lors du balayage du potential. Cependant, lorsque les molécules sont présentes en solution en tant que micelles une densité plus faible d'agent tensio-actif a été trouvée en raison de l'incapacité de répondre effectivement à la surface de ferrocenium générée dynamiquement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of high-melting fibres as linear nuclei for quiescent polymeric melts is instrumental in providing the superior mechanical properties of polymeric self-composites. It also has inherent advantages in the elucidation of fundamental aspects of polymeric crystallization and self-organization, not least in allowing systematic microscopic studies of polymeric crystallization from nucleation through to the growth interface. This has demonstrated explicitly that lamellae develop in two distinct ways, for slower and faster growth, depending on whether fold packing has or has not time to order before the next molecular layer is added with only the former leading to banded growth in linear polyethylene. Other gains in understanding concern cellulation and morphological instability, internuclear interference, isothermal lamellar thickening and banded growth being a consequence of the partial relief of initial surface stress. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer. There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux. A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.