996 resultados para surface oxygen complexes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1-4 mol.% by means of coprecipitation could improve notably the percentage of C-2 (=) similar to C-4 (=) in the products, but it was not so efficient when the sol-gel method was employed. XRD and H-2-TPR measurements showed that the catalyst samples giving high C-2 (=) similar to C-4 (=) yields possessed ultra. ne particles in the form of pure alpha-(Fe1-xMnx)(2)O-3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C-2 (=) similar to C-4 (=) yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrochemically modified ethylene oxidation over a PI film supported on the Na+ ion conductor beta '' alumina has been studied over a range of conditions encompassing both promotion and poisoning, The system exhibits reversible behavior, and the data are interpreted in terms of (i) Na-enhanced oxygen chemisorption and (ii) poisoning of the surface by accumulation of Na compounds. At low Na coverages the first effect results in increased competitive adsorption of oxygen at the expense of ethylene, resulting in an increased rate, At very negative catalyst potentials (high Na coverage) both effects operate to poison the system: the increased strength of the Pt-O bond and coverage of the catalytic surface by compounds of Na strongly suppress the rate, Kinetic and spectroscopic results for ethylene oxidation over a Pt(111)-Na model catalyst shed light on important aspects of the electrochemically controlled system, Low levels of Na promote the reaction and high levels poison it, mirroring the behavior observed under electrochemical control and strongly suggesting that sodium pumped from the solid electrolyte is the key species, XP and Auger spectra show that under reaction conditions, the sodium exists as a surface carbonate. Post-reaction TPD spectra and the use of (CO)-C-13 demonstrate that CO is formed as a stable reaction intermediate, The observed activation energy (56 +/- 3 kJ/mol) is similar to that measured for CO oxidation under comparable conditions, suggesting that the rate limiting step is CO oxidation. (C) 1996 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding and then designing efficient catalysts for CO oxidation at low temperature is one of the hottest topics in heterogeneous catalysis. Among the existing catalysts. Co3O4 is one of the most interesting systems: Morphology-controlled Co3O4 exhibits exceedingly high activity. In this study, by virtue of extensive density functional theory (OFT) calculations, the favored reaction mechanism in the system is identified. Through careful analyses on the energetics of elementary reactions on Co3O4(1 1 0)-A, Co3O4(1 1 0)-B, Co3O4(1 1 1) and Co3O4(1 0 0), which are the commonly exposed surfaces of Co3O4, we find the following regarding the relation between the activity and structure: (i) Co3+ is the active site rather than Co2+: and (ii) the three-coordinated surface oxygen bonded with three Co3+ may be slightly more reactive than the other two kinds of lattice oxygen, that is, the two-coordinated 0 bonded with one Co2+ and one Co3+ and the three-coordinated 0 bonded with one Co2+ and two Co3+. Following the results from Co3O4, we also extend the investigation to MnO2(1 1 0), Fe3O4(1 1 0), CuO(1 1 0) and CuO(1 1 1), which are the common metal oxide surfaces, aiming to understand the oxides in general. Three properties, such as the CO adsorption strength, the barrier of CO reacting with lattice 0 and the redox capacity, are identified to be the determining factors that can significantly affect the activity of oxides. Among these oxides, Co3O4 is found to be the most active one, stratifying all the three requirements. A new scheme to decompose barriers is introduced to understand the activity difference between lattice O-3c and O-2c on (1 1 0)-B surface. By utilizing the scheme, we demonstrate that the origin of activity variance lies in the geometric structures. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Density-functional theory calculations have been carried out to systematically study single surface oxygen vacancies on CeO2(111). It is surprisingly found that multiple structures with the two excess electrons localized at different positions can exist. We show that the origin of the multiconfigurations of 4f electrons is a result of geometric relaxation on the surface and strong localization characteristic of 4f electrons in ceria. The importance of 4f electron structures is also presented and discussed. These results may possess implications for our understanding of materials with f electrons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We perform DFT calculations to investigate the redox and formate mechanisms of water-gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad '' + *'--> H-ad' + O-ad"; (2) H-ad' + OHad '' --> H-2(g) + O-ad '' + *'; and (3) OHad" + OHad '' --> 2O(ad '') + H-2(g) (*': the free adsorption sites on the oxides; ad': adsorption on the metal; ad": adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au0, Au+ or Au� electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O–Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au� anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STM and impedance results of the self-assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome e metalloprotein and [Fe(CN)(6)](4-) and [Ru(NH(3))(6)](3+) complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH(2) group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2-3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co(2+), Co(3)O(4) and Fe(3)O(4) in the catalytic conditions studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tariq worked in the area of electronic textiles. He coated polyester fabric and PVDF films with polypyrrole. Plasma treatment was used to improve binding of coatings over the surface. He investigated in detail, the factors responsible for adhesion improvement using XPS, AFM, SEM, contact angle, abrasion tests and conductivity measurements. Different plasma gases, plasma power and plasma modes were investigated to get optimum bonding data. His investigations pointed towards improved surface oxygen functionalization and suitable surface morphology for improved bonding.