907 resultados para supercritical extraction
Resumo:
Clove basil (Ocimum gratissimum) extracts were obtained with supercritical CO2. Clove basil was cultivated using 0, 4, 8 and 12 kg/m(2) of organic fertilizer and was harvested in four seasons: winter, spring, summer and autumn, in the Southern Hemisphere. The extracts' global yields were determined at 40C and 150 bar for samples from all cultivation conditions and harvesting seasons. For selected samples, the extracts' global yields at 40C were determined for pressures of 100, 150, 200, 250 and 300 bar. The extracts were analyzed by gas chromatography-flame ionization detector. Antioxidant activity (AA) was assessed using the coupled reaction of beta-caroteneand linolenic acid. The extracts' global yields varied from 0.91 to 1.79% (dry basis), and the AAs varied from 62 to 84% compared with the control beta-carotene. Eugenol and beta-selinene were the major compounds. The relative proportion of eugenol varied from 35 to 60%, while the content of beta-selinene remained approximately constant (11.5-14.1%, area). The other substances quantified in the extracts were 1,8 cineole, trans-caryophyllene and alpha-selinene.
Resumo:
The aim of this paper was to apply a multiresidue method using Supercritical Fluid Extraction (SFE) and capillary gas chromatography with electron capture and mass spectrometry detections in the analysis of the levels of pesticide residues in fruits and vegetables. Single laboratory validation of both solid-liquid and supercritical fluid extraction methods was carried out for 32 compounds selected from four pesticide classes (organochlorine, organonitrogen, organophosphorus and pyretroid) in blank and fortified samples of fresh lettuce, potato, apple and tomato. Recoveries for the majority of pesticides from fortified samples at fortification level of 0.04-0.10 mg kg -1 ranged 74-96% for both methods and confirmation of pesticide identity was performed by gas-chromatography-mass spectrometry in a selected-ion monitoring mode. Both methods showed good limits of detection (less 0.01 mg kg-1, depending on the pesticide and matrix) and the SFE method minimized environmental concerns, time, and laboratory work. ©2005 Sociedade Brasileira de Química.
Resumo:
The yield and chemical composition of essential oils from leaves of Ocimum selloi B. submitted to organic and mineral fertilization, obtained by hydrodistillation and supercritical fluid extraction (SFE) were compared. Essential oil was extracted in a Clevenger-type apparatus for 2 h 30 min and analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m × 0.25 mm × 0.25 μm). Carrier gas was helium (1.7 ml/min); split ratio: 1:30. Temperature program: 50°C, rising to 180°C at 5°C/min, 180°C, rising to 280°C at 10°C/min. Injector temperature: 240°C and detector temperature: 230°C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. An Applied Separations-apparatus (Speed SFE, model 7071, Allentown, PA, EUA) was used for SFE extractions. They were conducted at pressure 200 bar and temperature 30°C (20 min in static mode and 40 min in dynamic mode). The supercritical CO2 flow rate was (6.8±0.7)×10-5 kg-CO2/s. The essential oil collected was immersed in ethylene glycol bath (5°C). The yield of essential oils obtained by SFE was larger than hydrodistillation in both fertilization treatments (279 and 333% for organic and mineral fertilizations, respectively). There were no differences between the fertilization treatments. The amount of the volatile components showed by GC-MS chromatogram was highest in the essential oil obtained by hydrodistillation than SFE. The main volatile constituents of the essential oils were trans-anethole (Hydrodistillation: organic - 52.4%; mineral - 55.0%/ SFE: Hydrodistillation - 62.8%; mineral - 66.8%) and methyl-chavicol (Hydrodistillation: organic - 37.3%; mineral - 38.3%/ SFE: organic - 8.4%; mineral - 4.3%). A reduction of methyl-chavicol relative proportion of essential oil obtained by SFE was observed. Cys-anethole, α-copaene, trans-cariofilene, germacrene-D, β-selinene, biciclogermacrene and spathulenol were expressed only in hydrodistillation. The extraction of essential oil by SFE presented larger yield of essential oil than hydrodistillation technique, presenting, however, these essential oils, different phytochemical profiles.
Resumo:
Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil). Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.
Resumo:
Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. ¹H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO2 were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated.
Resumo:
Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes obtained from high critical density treatment (low temperature and high pressure) are more stable due to more negative charges of zeta potential, but have smaller sizes than those from low critical density (high temperature and low pressure). However, when an additional 1-hour sonication is applied, the size of the flakes from low critical density treatment becomes smaller than those from high critical density treatment. This is probably due to more CO2 molecules stacked between the layers of the graphitic flakes. The zeta potentials of the sonicated samples were slightly more negative than nonsonicated samples. NMP and DMF co-solvents maintain stability and prevented reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more stable as the treatment time increases since larger flat area of graphite is exfoliated. In these experiments, the temperature has more impact on the flakes than pressure. The BET surface area resultsshow that CO2 penetrates the graphite layers more than N2. Moreover, the negative surface area of the treated graphite indicates that the CO2 molecules may be adsorbed between the graphite layers during supercritical treatment. The FE-SEM and AFM images show that the flakes have various shapes and sizes. The effects of surfactants can be observed on the FE-SEM images of the samples in one percent by weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) residue covers all of the remaining flakes. The AFM images show that the vertical thickness of the graphitic flakes can ranges from several nanometers (less than ten layers thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide treatment is a promising step compared to mechanical and chemical exfoliation techniques in the large scale production of thin graphitic flake, breaking down the graphite flakes into flakes only a fewer graphene layers thick.
Resumo:
Caryocar brasiliense Camb (Pequi) is a typical Brazilian Cerrado fruit tree. Its fruit is used as a vitamin source for culinary purposes and as a source of oil for the manufacture of cosmetics. C. brasiliense supercritical CO2 extracts exhibit antimicrobial activity against the bacteria Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and also possess antioxidant activity. This study was designed to evaluate the in vitro cytotoxicity and phototoxicity of the supercritical CO2 extract obtained from the leaves of this species. In vitro cytotoxicity and phototoxicity of C. brasiliense supercritical CO2 extracts were assessed using a tetrazolium-based colorimetric assay (XTT) and Neutral Red methods. We found that the C. brasiliense (Pequi) extract obtained by supercritical CO2 extraction did not present cytotoxic and phototoxic hazards. This finding suggests that the extract may be useful for the development of cosmetic and/or pharmaceutical products.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
A sensitive and precise stir bar sorptive extraction (SBSE) combined with LC (SBSE/LC) analysis is described for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in commercial cosmetic products in agreement with the European Union Cosmetics Directive 76/768/EEC. Important factors in the optimization of SB SE efficiency are discussed, such as time and temperature of extraction, pH, and ionic strength of the sample, matrix effects, and liquid desorption conditions by different modes (magnetic stirring, ultrasonic). The LOQs of the SBSE/LC method ranged from 30 to 200 ng/mg, with linear response over a dynamic range, from the LOQ to 2.5 mu g/mg, with a coefficient of determination higher than 0.993. The interday precision of the SBSE/LC method presented a coefficient of variation lower than 5%. The effectiveness of the proposed method was proven for analysis of commercial cosmetic products such as body creams, antiperspirant creams, and sunscreens.
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.
Resumo:
Rosemary leaf extracts were obtained by supercritical fluid extraction (SFE) and Soxhlet extraction. Their chemical compositions were evaluated by GC-MS. The extracts were analyzed for compounds reported in the literature as showing antimicrobial and antioxidant activities. The rosemary extracts were tested with regard to antioxidant (DPPH radical scavenging and total phenolic content - Folin-Denis reagent), antibacterial (Gram-positive bacteria - Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778 - and Gram-negative bacteria - Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) and antifungal (Candida albicans) activities. Antioxidant, antibacterial and antifungal activities of the SFE extracts were confirmed.
Resumo:
AbstractThe current study was employed to assess the influence of the different extraction methods on total tocols, γ-oryzanol content, and antioxidant properties of Chiang Mai Black rice, Mali Red rice, and Suphanburi-1 Brown rice bran oil. Rice bran oil (RBO) was extracted by Hexane, Hot pressed, Cold pressed, and Supercritical Fluid Extraction (SFe) methods. High yield of RBO was extracted by hexane and SFe methods. Total and subgroups of tocols, and γ-oryzanol content were determined by HPLC. The hexane extracted sample accounts for high content of γ-oryzanol and tocols. Besides, all of RBO extracts contain a significantly high amount of γ-tocotrienol. In vitro antioxidant assay results indicated that superior quality of oil was recovered by hexane extraction. The temperature in the extraction process also affects the value of the oil. Superior quality of oil was recovered by hexane extraction, in terms of phytochemical contents and antioxidant properties compared to other tested extraction methods. Further, thorough study of factors compromising the quality and quantity of RBO recovery is required for the development of enhanced functional foods and other related products.