896 resultados para super-resolution - face recognition - surveillance
Resumo:
This paper presents a new method for human face recognition by utilizing Gabor-based region covariance matrices as face descriptors. Both pixel locations and Gabor coefficients are employed to form the covariance matrices. Experimental results demonstrate the advantages of this proposed method.
Resumo:
The article describes researches of a method of person recognition by face image based on Gabor wavelets. Scales of Gabor functions are determined at which the maximal percent of recognition for search of a person in a database and minimal percent of mistakes due to false alarm errors when solving an access control task is achieved. The carried out researches have shown a possibility of improvement of recognition system work parameters in the specified two modes when the volume of used data is reduced.
Resumo:
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains.
Resumo:
Perception and recognition of faces are fundamental cognitive abilities that form a basis for our social interactions. Research has investigated face perception using a variety of methodologies across the lifespan. Habituation, novelty preference, and visual paired comparison paradigms are typically used to investigate face perception in young infants. Storybook recognition tasks and eyewitness lineup paradigms are generally used to investigate face perception in young children. These methodologies have introduced systematic differences including the use of linguistic information for children but not infants, greater memory load for children than infants, and longer exposure times to faces for infants than for older children, making comparisons across age difficult. Thus, research investigating infant and child perception of faces using common methods, measures, and stimuli is needed to better understand how face perception develops. According to predictions of the Intersensory Redundancy Hypothesis (IRH; Bahrick & Lickliter, 2000, 2002), in early development, perception of faces is enhanced in unimodal visual (i.e., silent dynamic face) rather than bimodal audiovisual (i.e., dynamic face with synchronous speech) stimulation. The current study investigated the development of face recognition across children of three ages: 5 – 6 months, 18 – 24 months, and 3.5 – 4 years, using the novelty preference paradigm and the same stimuli for all age groups. It also assessed the role of modality (unimodal visual versus bimodal audiovisual) and memory load (low versus high) on face recognition. It was hypothesized that face recognition would improve across age and would be enhanced in unimodal visual stimulation with a low memory load. Results demonstrated a developmental trend (F(2, 90) = 5.00, p = 0.009) with older children showing significantly better recognition of faces than younger children. In contrast to predictions, no differences were found as a function of modality of presentation (bimodal audiovisual versus unimodal visual) or memory load (low versus high). This study was the first to demonstrate a developmental improvement in face recognition from infancy through childhood using common methods, measures and stimuli consistent across age.
Resumo:
Whereas previous research has demonstrated that trait ratings of faces at encoding leads to enhanced recognition accuracy as compared to feature ratings, this set of experiments examines whether ratings given after encoding and just prior to recognition influence face recognition accuracy. In Experiment 1 subjects who made feature ratings just prior to recognition were significantly less accurate than subjects who made no ratings or trait ratings. In Experiment 2 ratings were manipulated at both encoding and retrieval. The retrieval effect was smaller and nonsignificant, but a combined probability analysis showed that it was significant when results from both experiments are considered jointly. In a third experiment exposure duration at retrieval, a potentially confounding factor in Experiments 1 and 2, had a nonsignificant effect on recognition accuracy, suggesting that it probably does not explain the results from Experiments 1 and 2. These experiments demonstrate that face recognition accuracy can be influenced by processing instructions at retrieval.
Resumo:
lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.
Resumo:
The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements.
Resumo:
We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.
Resumo:
[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.
Resumo:
The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB © software was used for simulating the models. PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems. The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.
Resumo:
As important social stimuli, faces playa critical role in our lives. Much of our interaction with other people depends on our ability to recognize faces accurately. It has been proposed that face processing consists of different stages and interacts with other systems (Bruce & Young, 1986). At a perceptual level, the initial two stages, namely structural encoding and face recognition, are particularly relevant and are the focus of this dissertation. Event-related potentials (ERPs) are averaged EEG signals time-locked to a particular event (such as the presentation of a face). With their excellent temporal resolution, ERPs can provide important timing information about neural processes. Previous research has identified several ERP components that are especially related to face processing, including the N 170, the P2 and the N250. Their nature with respect to the stages of face processing is still unclear, and is examined in Studies 1 and 2. In Study 1, participants made gender decisions on a large set of female faces interspersed with a few male faces. The ERP responses to facial characteristics of the female faces indicated that the N 170 amplitude from each side of the head was affected by information from eye region and by facial layout: the right N 170 was affected by eye color and by face width, while the left N 170 was affected by eye size and by the relation between the sizes of the top and bottom parts of a face. In contrast, the P100 and the N250 components were largely unaffected by facial characteristics. These results thus provided direct evidence for the link between the N 170 and structural encoding of faces. In Study 2, focusing on the face recognition stage, we manipulated face identity strength by morphing individual faces to an "average" face. Participants performed a face identification task. The effect of face identity strength was found on the late P2 and the N250 components: as identity strength decreased from an individual face to the "average" face, the late P2 increased and the N250 decreased. In contrast, the P100, the N170 and the early P2 components were not affected by face identity strength. These results suggest that face recognition occurs after 200 ms, but not earlier. Finally, because faces are often associated with social information, we investigated in Study 3 how group membership might affect ERP responses to faces. After participants learned in- and out-group memberships of the face stimuli based on arbitrarily assigned nationality and university affiliation, we found that the N170 latency differentiated in-group and out-group faces, taking longer to process the latter. In comparison, without group memberships, there was no difference in N170 latency among the faces. This dissertation provides evidence that at a neural level, structural encoding of faces, indexed by the N170, occurs within 200 ms. Face recognition, indexed by the late P2 and the N250, occurs shortly afterwards between 200 and 300 ms. Social cognitive factors can also influence face processing. The effect is already evident as early as 130-200 ms at the structural encoding stage.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.