138 resultados para sulfates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucara carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores hearing Fe-rich sphalerite (up to 24 mol % Fes). The second mineralization stage is partly superimposed on the first and consists of zoned east-west-trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration assemblages, including aluminum phosphate Sulfate (APS) minerals. The zoned enargite-pyrite veins display mineral zoning, from a core of enargite-pyrite +/- alunite with traces of Au, through an intermediate zone of tennantite, chalcopyrite, and Bi minerals to a poorly developed Outer zone hearing sphalerite-galena +/- kaolinite. The carbonate-hosted replacement ores are controlled along N 35 degrees E, N 90 degrees E, N 120 degrees E, and N 170 degrees E faults. They form well-zoned upward-flaring pipelike orebodies with a core of famatinite-pyrite and alunite, an intermediate zone with tetrahedrite-pyrite, chalcopyrite, matildite, cuprobismutite, emplectite, and other Bi minerals accompanied by APS minerals, kaolinite, and dickite, and an outer zone composed of Fe-poor sphalerite (in the range of 0.05-3.5 mol % Fes) and galena. The outermost zone consists of hematite, magnetite, and Fe-Mn-Zn-Ca-Mg carbonates. Most of the second-stage carbonate-replacement orebodies plunge between 25 degrees and 60 degrees to the west, suggesting that the hydrothermal fluids ascended from deeper levels and that no lateral feeding from the veins to the carbonate-replacement orebodies took place. In the Venencocha and Santa Rosa areas, located 2.5 km northwest of the Cerro de Pasco open pit and in the southern part of the deposit, respectively, advanced argillic altered dacitic domes and oxidized veins with advanced argillic alteration halos occur. The latter veins are possibly the oxidized equivalent of the second-stage enargite-pyrite veins located in the western part of the deposit. The alteration assemblage quartz-muscovite-pyrite associated with the pyrite-quartz body suggests that the first stage precipitated at slightly, acidic fin. The sulfide mineral assemblages define an evolutionary path close to the pyrite-pyrrhotite boundary and are characteristic of low-sulfidation states; they suggest that the oxidizing slightly acidic hydrothermal fluid was buffered by phyllite, shale, and carbonate host rock. However, the presence in the pyrite-quartz body of hematite within quartz suggests that, locally, the fluids were less buffered by the host rock. The mineral assemblages of the second mineralization stage are characteristic of high- to intermediate-sulfidation states. High-sulfidation states and oxidizing conditions were achieved and maintained in the cores of the second-stage orebodies, even in those replacing carbonate rocks. The observation that, in places, second-stage mineral assemblages are found in the inner and outer zones is explained in terms of the hydrothermal fluid advancing and waning. Microthermometric data from fluid inclusions in quartz indicate that the different ores of the first mineralization stage formed at similar temperatures and moderate salinities (200 degrees-275 degrees C and 0.2-6.8 wt % NaCl equiv in the pyrite-quartz body; 192 degrees-250 degrees C and 1.1-4.3 wt % NaCl equiv in the pyrrhotite bodies; and 183 degrees-212 degrees C and 3.2-4.0 wt % NaCl equiv in the Zn-Pb ores). These values are similar to those obtained for fluid inclusions in quartz and sphalerite from the second-stage ores (187 degrees-293 degrees C and 0.2-5.2 wt % NaCl equiv in the enargite-pyrite veins: 178 degrees-265 degrees C and 0.2-7.5 wt % NaCl equiv in quartz of carbonate-replacement orebodies; 168 degrees-999 degrees C and 3-11.8 wt % NaCl equiv in sphalerite of carbonate-replacement orebodies; and 245 degrees-261 degrees C and 3.2-7.7 wt % NaCl equiv in quartz from Venencocha). Oxygen and hydrogen isotope compositions oil kaolinite from carbonate-replacement orebodies (delta(18)O = 5.3-11.5%o, delta D = -82 to -114%o) and on alunite from the Venencocha and Santa Rosa areas (delta(18)O = 1.9-6.9%o, delta D = -56 to -73%o). Oxygen isotope compositions of quartz from the first and second stages have 6180 values from 9.1 to 1.7.8 per mil. Calculated fluids in equilibrium with kaolinite have delta(18)O values of 2.0 to 8.2 and delta D values of -69 to -97 per mil; values in equilibrium with alunite are -1.4 to -6.4 and -62 to -79 per mil. Sulfur isotope compositions of sulfides from both stages have a narrow range of delta(34)S values, between -3.7 and +4.2 per mil; values for sulfates from the second stage are between 4.2 and 31.2 per mil. These results define two mixing trends for the ore-forming fluids. The first trend reflects mixing between a moderately saline (similar to 10 wt % NaCl equiv) magmatic end member that had degassed (as indicated by the low delta D values) and meteoric water. The second mixing indicates condensation of magmatic vapor with HCl and SO(2) into meteoric water, which formed alunite. The hydrothermal system at Cerro de Pasco was emplaced at a shallow depth (similar to 500 m) in the epithermal and upper part of a porphyry environment. The similar temperatures and salinities obtained for the first stage and second stages, together with the stable isotope data, indicate that both stages are linked and represent successive stages of epithermal polymetallic mineralization in the upper part of a porphyry system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the delta(13)C and delta(18)O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the delta(13)C and delta(18)O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (delta(13)Capproximate to-4parts per thousand and delta(18)Oapproximate to+10parts per thousand), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The delta(34)S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The delta(34)S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from -19.1 to +22.8parts per thousand, and from -22.4 to +59.6parts per thousand, respectively, suggesting mixing of sulfur from different sources. The peak of delta(34)S values of cinnabar and pyrite close to 0parts per thousand is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the delta(34)S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive delta(34)S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The quantification of total (free+sulfated) metanephrines in urine is recommended to diagnose pheochromocytoma. Urinary metanephrines include metanephrine itself, normetanephrine and methoxytyramine, mainly in the form of sulfate conjugates (60-80%). Their determination requires the hydrolysis of the sulfate ester moiety to allow electrochemical oxidation of the phenolic group. Commercially available urine calibrators and controls contain essentially free, unhydrolysable metanephrines which are not representative of native urines. The lack of appropriate calibrators may lead to uncertainty regarding the completion of the hydrolysis of sulfated metanephrines, resulting in incorrect quantification. METHODS: We used chemically synthesized sulfated metanephrines to establish whether the procedure most frequently recommended for commercial kits (pH 1.0 for 30 min over a boiling water bath) ensures their complete hydrolysis. RESULTS: We found that sulfated metanephrines differ in their optimum pH to obtain complete hydrolysis. Highest yields and minimal variance were established for incubation at pH 0.7-0.9 during 20 min. CONCLUSION: Urinary pH should be carefully controlled to ensure an efficient and reproducible hydrolysis of sulfated metanephrines. Synthetic sulfated metanephrines represent the optimal material for calibrators and proficiency testing to improve inter-laboratory accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jalta and Jebel Ghozlane ore deposits are located in the extreme North of Tunisia, within the Nappe zone. The mineralization of Jalta, hosted in Triassic dolostones and the overlying Mio-Pliocene conglomerates, consists of abundant galena, barite, and cerussite with accessory sphalerite, pyrite, and jordanite. At Jebel Ghozlane, large Pb-Zn concentrations occur in the Triassic dolostones and Eocene limestones. The mineral association consists of galena, sphalerite, barite, and celestite and their oxidation products (cerussite, smithsonite, and anglesite). Lead isotope ratios in galena from both districts are relatively homogeneous ((206)Pb/(204)Pb = 18.702-18.823, (207)Pb/(204)Pb = 15.665-15.677, (208)Pb/(204)Pb = 38.725-38.875). The delta(34)S values for sulfates from both areas (+12.2 to +16.2 parts per thousand at Jalta and + 14.3 to + 19.4 parts per thousand at Jebel Ghozlane) are compatible with a derivation of sulfur from marine sulfates, possibly sourced from the Triassic evaporites. The delta(34)S values of the sulfides have a range between -10 and +12.5 parts per thousand at Jalta, and between -9.1 and +22.1 parts per thousand at Jebel Ghozlane. The large range of values suggests reduction of the sulfate by bacterial and/or thermochemical reduction of sulfate to sulfur. The high delta(34)S values of sulfides require closed-system reduction processes. The isotopically light carbon in late calcites (-6.3 to -2.5 parts per thousand) and authigenic dolomite (-17.6 parts per thousand) suggests an organic source of at least some of the carbon in these samples, whereas the similarity of the delta(18)O values between calcite (+24.8 parts per thousand) and the authigenic dolomite (+24.7 parts per thousand) of Jalta and their respective host rocks reflects oxygen isotope buffering of the mineralizing fluids by the host rock carbonates. The secondary calcite isotope compositions of Jalta are compatible with a hydrothermal fluid circulation at approximately 100 to 200 degrees C, but temperatures as low as 50 degrees C may be indicated by the late calcite of Jebel Ghozlane (delta(18)O of +35.9 parts per thousand). Given the geological events related to the Alpine orogeny in the Nappe zone (nappe emplacement, bimodal volcanism, and reactivation of major faults, such as Ghardimaou-Cap Serrat) and the Neogene age of the host rocks in several localities, a Late-Miocene age is proposed for the Pb-Zn ore deposits considered in this study. Remobilization of deep-seated primary deposits in the Paleozoic sequence is the most probable source for metals in both localities considered in this study and probably in the Nappe zone as a whole. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different food matrices on the metabolism and excretion of polyphenols is uncertain. The objective of the study was to evaluate the possible effect of milk on the excretion of (2)-epicatechin metabolites from cocoa powder after its ingestion with and without milk. Twenty-one volunteers received the following three test meals each in a randomised cross-over design with a 1-week interval between meals: (1) 250 ml whole milk as a control; (2) 40 g cocoa powder dissolved in 250 ml whole milk (CC-M); (3) 40 g cocoa powder dissolved in 250 ml water (CC-W). Urine was collected before consumption and during the 0-6, 6-12 and 12-24 h periods after consumption. (2)-Epicatechin metabolite excretion was measured using liquid chromatography-MS. One (2)-epicatechin glucuronide and three (2)-epicatechin sulfates were detected in urine excreted after the intake of the two cocoa beverages (CC-M and CC-W). The results show that milk does not significantly affect the total amount of metabolites excreted in urine. However, differences in metabolite excretion profiles were observed; there were changes in the glucuronide and sulfate excretion rates, and the sulfation position between the period of excretion and the matrix. The matrix in which polyphenols are consumed can affect their metabolism and excretion, and this may affect their biological activity. Thus, more studies are needed to evaluate the effect of these different metabolite profiles on the body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic study of the interactions of ionic surfactants with protein trypsin in buffer solution pH 3.5, 7.0 and 9.0, ionic strength 10 mM at 298 K was done using the microcalorimetric technique. In this study, anionic surfactant solutions of the sodium n-alkyl sulfates series (C8, C10, C12 and C14) were used. The enthalpy of interaction (ΔintHº) shows that the interaction of the surfactants C8, C10, C12 and C14 with trypsin in the solution pH 3.5 is an endothermic process with the value of ΔintHº decreasing linearly with increasing carbon chain length, which is attributed to the unfolding of the polypeptide chain. In the solution pH 7.0, we observed the same trend except for C14. In the solution pH 9.0, from C10 the enthapy of interaction didn't change with the increasing of the carbon chain length due to unfolding of the polypeptide. We concluded that when trypsin is folded, the enthalpy of interaction shows a linear relationship with the surfactant's hydrophobicity, in agreement with Traube's rule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the biological evolution, marine macroalgae have developed biochemicals tools in order to utilize components of seawater such as sulfates and halogens, to produce a variety of chemicals (secondary metabolites).This review shows and discuss the occurrence of sulfated and/or halogenated phenolic compounds in seaweeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a process for metal recovery from spent NiMo and CoMo/Al2O3 commercial hydrorefining catalysts. The samples were treated by fusion with potassium hydrogen sulfate (5 h, 600 ºC) with a KHSO4/catalyst mass ratio of 10:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon compounds as residue. Losses of nickel and cobalt may reach 16 wt% of the amount present in the sample, depending on the silicon content. Soluble metals were isolated by selective precipitation techniques (nickel, cobalt, aluminum) or by solvent extraction with methyl-isobutyl ketone (molybdenum) in a hydrochloric acid medium. All metals were recovered in very good yields except for nickel and cobalt in the presence of considerable amounts of silicon. Soluble wastes consist of potassium/sodium sulfates/chlorides. Solid wastes correspond to about 4 wt% of the catalyst and can be discarded in industrial dumps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, equilibrium and dynamic sorption properties of weakly basic chelating adsorbents were studied to explain removal of copper, nickel from a concentrated zinc sulfate solution in a hydrometallurgical process. Silica-supported chelating composites containing either branched poly(ethyleneimine) (BPEI) or 2-(aminomethyl)pyridine (AMP) as a functional group were used. The adsorbents are commercially available from Purity Systems Inc, USA as WP-1® and CuWRAM®, respectively. The fundamental interactions between the adsorbents, sulfuric acid and metal sulfates were studied in detail and the results were used to find the best conditions for removal of copper and nickel from an authentic ZnSO4 process solution. In particular, the effect of acid concentration and temperature on the separation efficiency was considered. Both experimental and modeling aspectswere covered in all cases. Metal sorption is considerably affected by the chemical properties of the studied adsorbents and by the separation conditions. In the case of WP-1, acid affinity is so high that column separation of copper, nickel and zinc has to be done using the adsorbent in base-form. On the other hand, the basicity of CuWRAM is significantly lower and protonated adsorbent can be used. Increasing temperature decreases the basicity and the metals affinity of both adsorbents, but the uptake capacities remain practically unchanged. Moreover, increasing temperature substantially enhances intra-particle mass transport and decreases viscosities thus allowing significantly higher feed flow rates in the fixed-bed separation. The copper selectivity of both adsorbents is very high even in the presence of a 250-fold excess of zinc. However, because of the basicity of WP-1, metal precipitation is a serious problem and therefore only CuWRAM is suitable for the practical industrial application. The optimum temperature for copper removal appears to be around 60 oC and an alternative solution purification method is proposed. The Ni/Zn selectivity of both WP-1 and CuWRAM is insufficient for removal of the very small amounts of nickel present in the concentrated ZnSO4 solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine diatom Coscinodiscus wailesii has attracted ecological interest because their blooms affect fishing areas. The aim of this work was the isolation, extraction and partial chemical characterization of soluble exopolysaccharide and bound exopolysaccharide from C. wailesii. Cultures were grown in Guillards f/2 medium under controlled conditions of temperature, aeration, photoperiod and light intensity. Percentage of carbohydrate, uronic acids, sulfates groups and cellular lipids was determined. Ion exchange chromatography of exopolysaccharides produced three fractions whose partial chemical structures were disclosed using 13C NMR and methylation techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavobacterium heparinum is a soil bacterium that produces several mucopolysaccharidases such as heparinase, heparitinases I and II, and chondroitinases AC, B, C and ABC. The purpose of the present study was to optimize the preparation of F. heparinum chondroitinases, which are very useful tools for the identification and structural characterization of chondroitin and dermatan sulfates. We observed that during the routine procedure for cell disruption (ultrasound, 100 kHz, 5 min) some of the chondroitinase B activity was lost. Using milder conditions (2 min), most of the chondroitinase B and AC protein was solubilized and the enzyme activities were preserved. Tryptic soy broth without glucose was the best culture medium both for bacterial growth and enzyme induction. Chondroitinases AC and B were separated from each other and also from glucuronidases and sulfatases by hydrophobic interaction chromatography on HP Phenyl-Sepharose. A rapid method for screening of the column fractions was also developed based on the metachromatic shift of the color of dimethylmethylene blue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Master’s thesis focused on the oxidation of sodium thiosulfate using non thermal plasma technology as an advance oxidation process (AOP). By using this technology we can degrade certain toxic chemical compounds present in mining wastewaters as pollutants. Different concentrations of thiosulfate and pulse frequencies were used in the PCD experiments and the results in terms of various delivered energies (kWh/m3) and degradation kinetics were compared. Pulsed corona discharge is an energy efficient process compared to other oxidation processes using for the treatment of waste water pollutants. Due to its simplicity and low energy costs make it attractive in the field of waste water treatment processes. This technology of wastewater treatment has been tested mainly on pilot scale level and in future the attempts are to be focus on PCD investigations on larger process scale. In this research work of oxidation of thiosulfate using pulsed corona discharge, the main aim of this research was to study degradation of a studied toxic and not environmental friendly chemical compound. The focus of this research was to study the waste waters coming from the gold mines containing leachate compound thiosulfate. Literature review contained also gold leaching process when cyanide is used as the leachate. Another objective of this work was to compare PCD process with other processes based on their energy efficiencies. In the experimental part two concentrations of sodium thiosulfate, 1000ppm and 400ppm, were used. Two pulse generator frequencies of 833 and 200 pulses per second (pps) were used. The chemical analyses of the samples taken during semi-batch PCD oxidation process were analyzed by ion chromatographic (IC). It is observed after the analyses that among different frequencies and concentrations, the most suitable ones for the process is 200pps and 1000ppm respectively because the pollutants present in the waste water has more time to react with the OH radicals which are the oxidants and the process is energy efficient compared to other frequencies.