990 resultados para sugar-alcohol mill
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
Calcium oxalate (CaOX) is the most intractable scale component to remove in sugar mill evaporators by either mechanical or chemical means. The operating conditions of sugar mill evaporators should preferentially favour the formation of the thermodynamically stable calcium oxalate monohydrate (COM), yet analysis of scale deposit from different sugar factories have shown that calcium oxalate dihydrate (COD) is usually the predominant phase, and in some cases is the only hydrate formed. The effects of trans-aconitic, succinic and acetic acids, all of which are present in sugarcane juice, and ethylenediamine tetraacetic acid disodium salt (EDTA) on the growth of CaOX crystals have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TGA). trans-Aconitic acid, which constitutes two-thirds of the organic acid component in sugarcane juice, in the presence of sugar resulted in the formation of COD and COM in a 3:1 ratio. EDTA was the most effective acid to promote the formation of COD followed by trans-aconitic acid, then acetic acid and lastly succinic acid.
Resumo:
This study of a unique historic situation is sociologically framed and politically contextualized. It examines the technical and persuasive rhetorical dimensions of calculations employed at a nineteenth-century Queensland sugar plantation and mill in relation to the employment of indentured labour. Historical archival data is interpreted through the lens of the rhetoric of rationality. Queensland legislation permitted the employment of indentured Pacific islanders to assist in the development of its sugar industry. Accounting practices employed at the Colonial Sugar Refinery (CSR) Company’s Goondi Plantation and Mill focused on recording and controlling labour costs to maximize profits and maintain a healthy dividend to shareholders. The use of this single perspective, while it provides a restricted interpretation of events, nevertheless enables some unique insights about the practice of accounting in this historic context.
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
To date, the formation of deposits on heat exchanger surfaces is the least understood problem in the design of heat exchangers for processing industries. Dr East has related the structure of the deposits to solution composition and has developed predictive models for composite fouling of calcium oxalate and silica in sugar factory evaporators.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
Membrane filtration technology has been proven to be a technically sound process to improve the quality of clarified cane juice and subsequently to increase the productivity of crystallisation and the quality of sugar production. However, commercial applications have been hindered because the benefits to crystallisation and sugar quality have not outweighed the increased processing costs associated with membrane applications. An 'Integrated Sugar Production Process (ISPP) Concept Model' is proposed to recover more value from the non-sucrose streams generated by membrane processing. Pilot scale membrane fractionation trials confirmed the technical feasibility of separating high-molecular weight, antioxidant and reducing sugar fractions from cane juice in forms suitable for value recovery. It was also found that up to 40% of potassium salts from the juice can be removed by membrane application while removing the similar amount of water with potential energy saving in subsequent evaporation. Application of ISPP would allow sugar industry to co-produce multiple products and high quality mill sugar while eliminating energy intensive refining processes.
Resumo:
Biomicrocapsules mean microscopic living organisms which carry important nutrients, very essential for the growth and development of aquatic organisms as well as other animals. Among these biomicrocapsules, Chlorella ellipsoidea, an important green microalga (Chlorophyceae) which contains 40-45% crude protein, 12-16% crude lipid, 14-15% minerals, colour pigments, vitamins and carotene. The microalga, C. ellipsoidea was cultured in four different dilutions of supernatant of digested sugar mill effluent (DSME) i.e. 25, 50, 75 and 100% DSME and Bold basal medium (BBM) as control in laboratory condition. Maximum cell growth and chlorophyll a content of C. ellipsoidea were obtained on l0th day of culture in supernatant of 50% diluted DSME followed by those of this biomicrocapsule grown in BBM, and 75, 25 and 100% DSME at stationary phase. Cell number had highly (p<0.01) direct correlation with chlorophyll a (r = 0.889) of C. ellipsoidea, and optical density (r = 0.926) of media. Chlorophyll a was also highly (p<0.01) and directly correlated with optical density (r= 0.877) of media. The specific growth rates (µ/day) of cell and chlorophyll a of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) varied from those of C. ellipsoidea cultured in BBM followed by other DSME. Total biomass of C. ellipsoidea cultured in supernatant of 50% DSME was found significantly (p<0.01) higher than that of this microalga cultured in BBM, and supernatant of 25, 75 and 100% DSME. Similar trend was also observed in the case of optical density. The physico-chemical properties of media were varied with the growth of cell of this microalga. It was recorded that cell number, chlorophyll a of biomicrocapsule, and optical density of media were highly (p<0.01) and directly correlated with pH, hardness and alkalinity, and inversely correlated with nitrate-N. Crude protein and crude lipid of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) higher than those of C. ellipsoidea cultured in other DSME and BBM. Due to best growth performance exhibited by this microalga grown in supernatant of 50% DSME, it may be used to grow in supernatant of 50% DSME to get more essential nutrients than that cultured in supernatant of other DSME media.
Resumo:
This project verified the potential for the production of hydrogen via water electrolysis by using the exceeding electrical energy resultant from alcohol and sugar plants that use sugar cane bagasse as fuel. The studies were carried out in cogeneration plants authorized by the Electrical Energy National Agency (ANEEL). The processing history of sugar cane considered was based on the 2006/2007 harvests. The total bagasse produced, electrical energy generated and exceeding electrical energy in a year were calculated. It was obtained an average energy consumption value of 5.2 kWh Nm(-3) and the hydrogen production costs regarding the amount of sugar cane processed that ranged from US$ 0.50 to US$ 0.75 Nm(-3). The results pointed that the costs for the production of hydrogen via the bagasse exceeding energy are close to the production costs that use other sources of energy. As the energy generated from the bagasse is a renewable one, this alternative for the production of hydrogen is economical and environmentally viable. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Brazil produced in 2002/03 season 317.87×106tons of sugar cane stalks and 36.88×106tons of vegetal residues (green leaves, dry leaves and tops) in a planted area of 4.61×106 hectares (ha). These residues have a useful heat of 3,613.14Mcal.t-1. Currently most of this biomass is burned as a pre-harvest practice. The doubt persists in the system type that it must be adopted to pick up, load, transport and unload this biomass at the sugar mill boilers. This study analyzed 22 variables related to operational costs and physical characteristics of these residues in a field situation using a JOHN DEERE® 6850 forage harvester with two different treatments: T1 and T2 (two types of rakes) with 6 repetitions each one. The geographic location of the studied area that belongs to COSTA PINTO MILL (COSAN® Group) is: Latitude 22°40'30S and Longitude 47°36'38W. The adopted methodology was proposed by Ripoli et al. (2002). The obtained results at a 5% level of significance showed that both treatments did not differed significantly between them. Some of the results were, where EBP stands for Oil Equivalent Barrel: Windrowing (T1=US$0.17.EBP-1 and US$9.59.ha-1, T2=US$0.08.EBP-1 and US$4.27.ha-1); Pick up (T1=US$1.31.EBP-1 and US$44.29.ha-1, T2 =US$1.37.EBP-1 and US$48.36.ha-1); Transportation (T1=US$1.27.EBP-1 and US$14,30.ha -1, T2=US$1.33.EBP-1 and US$14,80.ha -1), Unloading at the sugar mill (T1=US$0.30.EBP-1 and US$3.39.ha-1, T2=US$0.32.EBP-1 and US$3.51.ha-1); Total (T1=US$3.05.EBP-1 and US$71.57.ha-1, T2=US$3.10.EBP-1 and US$70.94.ha-1). Confronting the obtained data with the ones in the bibliography, this system revealed itself more expensive than the baling system or the integral harvest system using combines.
Resumo:
Includes bibliography