974 resultados para sucrose fermentation
Resumo:
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
The objective of this study was to determine if the effects of inoculation with Lactobacillus buchneri 40788 were detectable when applied to whole-plant corn stored in farm silos. Corn silage was randomly sampled from farms in Wisconsin, Minnesota, and Pennsylvania, and was untreated (n = 15) or treated with an inoculant (n = 16) containing L. buchneri 40788 alone or this organism combined with Pediococcus pentosaceus during May and June 2007. Corn silage that was removed from the silo face during the morning feeding was sampled, vacuum-packed, and heat sealed in polyethylene bags and shipped immediately to the University of Delaware for analyses. Silage samples were analyzed for dry matter (DM), nutrient composition, fermentation end-products, aerobic stability, and microbial populations. The population of L. buchneri in silages was determined using a real-time quantitative PCR method. Aerobic stability was measured as the time after exposure to air that it took for a 2 degrees C increase above an ambient temperature. The DM and concentrations of lactic and acetic acids were 35.6 and 34.5, 4.17 and 4.85, and 2.24 and 2.41%, respectively, for untreated and inoculated silages and were not different between treatments. The concentration of 1,2-propanediol was greater in inoculated silages (1.26 vs. 0.29%). Numbers of lactic acid bacteria determined on selective agar were not different between treatments. However, the numbers of L. buchneri based on measurements using real-time quantitative PCR analysis were greater and averaged 6.46 log cfu-equivalents/g compared with 4.89 log cfu-equivalent for inoculated silages. There were fewer yeasts and aerobic stability was greater in inoculated silages (4.75 log cfu/g and 74 h of stability) than in untreated silages (5.55 log cfu/g and 46 h of stability). This study supports the effectiveness of L. buchneri 40788 on dairy farms.
Resumo:
This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.
Resumo:
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712(T) were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37A degrees C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h(-1)) and the highest specific inulinase activity (1.65 U mg(-1) dry cell weight) among all strains investigated, when grown at 37A degrees C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose(-1)) was achieved by K. marxianus CBS 712(T) at 37A degrees C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Resumo:
The influence of four variables, specifically PEG molar mass (400, 1,000, and 8,000 g/mol), concentrations of PEG and phosphate salts (15, 20, and 25% for both), and agitation intensity (110, 150, and 200 rpm), on clavulanic acid (CA) extraction by extractive fermentation with PEG/phosphate salts aqueous two-phase system was investigated in shaken flasks using a 2(4-1)-fractional factorial design. After selection of the two most significant variables (agitation intensity and PEG molar mass), an optimization study conducted according to a 2(2)-central composite design revealed that 25% PEG 8,000 g/mol and phosphate salts at 240 rpm (run 6) were the best conditions for the extractive fermentation, leading to the best results in terms of partition coefficient (k = 8.2), yield of CA in the PEG-rich phase (eta(T) = 93%) and productivity (P = 5.3 mg/Lh). As a first attempt to make a scale-up of these results, the effectiveness of the extractive fermentation was then checked in a bench-scale bioreactor under conditions as close as possible to the optimum ones determined in flasks. The highest CA concentration obtained in the PEG-rich phase (691 mg/L) was 30% higher than in flasks, thus demonstrating the potential of such a new process, integrating the production and extraction steps, as a promising, low-cost tool to obtain high yields of this and similar products. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 95-103, 2011
Resumo:
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) < 1.00), and LPS removal into the micelle-rich phase (%REM(LPS) > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1644-1653, 2010
Resumo:
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Clavulanic acid (CA) is a potent inhibitor of beta-lactamases, produced by some resistant pathogenic microorganisms, which allows efficient treatment of infectious diseases. The kinetic and thermodynamic parameters of CA production by a new isolate of Streptomyces DAUFPE 3060 and its degradation were evaluated. The effect of temperature on the system was investigated in the range 24-40 degrees C adopting an overall model accounting for (a) the Arrhenius-type formation of CA by fermentation, (b) the hypothetical reversible unfolding of the enzyme limiting the overall metabolism, and (c) the irreversible first-order degradation of CA. The higher rates of CA formation (k(CA) = 0,107 h(-1)) and degradation (k(d) = 0.062 h(-1)) were observed at 32 and 40 degrees C, respectively. The main thermodynamic parameters of the three above hypothesized events were estimated. In particular, the activation parameters of degradation (activation energy = 39.0 kJ/mol; Delta H(d)* = 36.5 kJ/mol; Delta S(d)* = -219.7 J/(mol K); Delta G(d)* = 103.5 kJ/mol) compare reasonably well with those reported in the literature for similar system without taking into account the other two events. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The simultaneous effects of different binary co-cultures of Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus rhamnosus and Bifidobacterium lactis with Streptococcus thermophilus and of different prebiotics on the production of fermented milk were investigated in this paper. In particular, we determined and compared the kinetics of acidification of milk either as such or supplemented with 4% (w/w) maltodextrin, oligofructose and polydextrose, as well as the probiotic survival, chemical composition (pH, lactose, lactic acid and protein contents), fatty acids profile and conjugate linoleic acid (CIA) content of fermented milk after storage at 4 degrees C for 24 h. Fermented milk quality was strongly influenced both by the co-culture composition and the selected prebiotic. Depending on the co-culture, prebiotic addition to milk influenced to different extent kinetic acidification parameters. All probiotic counts were stimulated by oligofructose and polydextrose, and among these B. lactis always exhibited the highest counts in all supplemented milk samples. Polydextrose addition led to the highest post-acidification. Although the contents of the main fatty acids were only barely influenced. the highest amounts of conjugated linoleic acid (38% higher than in the control) were found in milk fermented by S. thermophilus-L. acidophilus co-culture and supplemented with maltodextrin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanico variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.
Resumo:
Red yeast rice is a pigmented material that is traditionally used in Asia as a food colorant. In addition to food applications, red yeast rice is known in traditional Chinese medicine for its therapeutic actions. The aim of this work was to study the quality interactions during spray drying of extracts from the Monascus ruber van Tiegham fermentation broth. The quality indicators used for the dry powder properties were the levels of monacolin K, ratio of red to yellow pigments, as well as their antioxidant activity. The experiments followed a Box-Behnken design to study the effects of the adjuvant/drug ratio, adjuvant incorporation time, and oulet drying temperature on the pharmacotechnical, chemical, and biological properties of the dry extract. The influences of these factors on the characteristics of the dry powder were evaluated by the bulk density, tapped density, Carr index, Hausner factor, residual moisture content, water activity, antioxidant activity, monacolin K, yellow-to-red pigment ratio, and antioxidant activity. The analysis of variance (ANOVA) on experimental data revealed that an increase in drying temperature significantly increased the dry powder yield and caused an improvement in powder flow properties, which may be related to lower moisture contents. The drying temperature did not affect the monacolin K content in dry powder but showed a complex influence on its antioxidant activity. The increase in drying adjuvant-to-drug ratio affected the yield and also indicated a protective effect on the monacolin K content. The duration of drying adjuvant incorporation had little or negligible effect on powder properties. The dry extracts of red yeast rice showed adequate properties and the process proposed herein can be used to prepare nutraceutical products.