996 resultados para subaqueous volcano


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed Santiaguito volcano in southwestern Guatemala from March 2008 - March 2010. Seismic and infrasound data collected between January and March of 2009 contain records of many diverse processes occurring at the dacitic dome complex, including the recurrence of short lived (30-200 seconds in duration) harmonic tremor concurrent with ash poor gas emissions from the volcano. We employ several different analytical techniques to examine different portions of the tremor and source mechanisms. We use the parameters derived by this analysis to compare the feasibility of several suggested models of eruption mechanisms, and determine that this type of harmonic tremor is most justifiably generated by the flow of gas through crack networks generated by shear fracture along the magma conduit margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used differential GPS measurements from a 13 station GPS network spanning the Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity and tectonic movements near these two active and potentially hazardous features. Caldera-forming events occurred from 70-40 ka and at Santa Ana/Izalco volcanoes eruptive activity occurred as recently as 2005. Twelve differential stations were surveyed for 1 to 2 hours on a monthly basis from February through September 2009 and tied to a centrally located continuous GPS station, which serves as the reference site for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken over 20 hours or longer range from 2-11 mm in the horizontal (north and east) components of the inter-station baselines, suggesting a lower detection limit for the horizontal components of any short-term tectonic or volcanic deformation. Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of the precipitable water vapor in the troposphere suggests that tropospheric decorrelation as a function of baseline lengths and variable site elevations are the most likely sources of vertical error. Differential motions of the 12 sites relative to the continuous reference site reveal inflation from February through July at several sites surrounding the caldera with vertical displacements that range from 61 mm to 139 mm followed by a lower magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary period reach 300 mm/yr with 1σ uncertainties of +/- 26 – 119 mm. Only one other station outside the caldera exhibits a similar deformation trend, suggesting a localized source. The results suggest that the use of differential GPS measurements from short duration occupations over short baselines can be a useful monitoring tool at sub-tropical volcanoes and calderas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005 – 2009. A pattern of eruptive activity was observed during 2005 – 2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10 – 30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: 1) an initial inflation due to pressurization, followed by 2) a rapid deflation as overpressure is explosively release, and finally 3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially crystallized plug of magma. The energy released during the strong explosions has allowed for imaging of Fuego’s shallow conduit, which appears to have migrated west of the summit crater. In summary, Fuego is becoming more gas charged and its summit centered vent is shifting to the west - serious hazard consequences are likely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mount Etna, Italy, is one of the most active volcanoes in the world, and is also regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer network (FLAME) has provided ground-based SO2 measurements with high temporal resolution, providing an opportunity to validate satellite SO2 measurements at Etna. The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes global daily measurements of trace gases in the atmosphere, was used to compare SO2 amount released by the volcano during paroxysmal lava-fountaining events from 2004 to present. We present the first comparison between SO2 emission rates and SO2 burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass (NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite of a good data set from the FLAME network, finding coincident OMI and FLAME measurements proved challenging and only one paroxysmal event provided a good validation for OMI. Another goal of this work was to assess the efficacy of the FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the FLAME network is only operational during daylight hours and some paroxysms occur at night. OMI measurements are advantageous since SO2 emissions from nighttime paroxysms can often be quantified on the following day, providing improved constraints on Etna’s SO2 budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turrialba is one of the largest and most active stratovolcanoes in the Central Cordillera of Costa Rica and an excellent target for validation of satellite data using ground based measurements due to its high elevation, relative ease of access, and persistent elevated SO2 degassing. The Ozone Monitoring Instrument (OMI) aboard the Aura satellite makes daily global observations of atmospheric trace gases and it is used in this investigation to obtain volcanic SO2 retrievals in the Turrialba volcanic plume. We present and evaluate the relative accuracy of two OMI SO2 data analysis procedures, the automatic Band Residual Index (BRI) technique and the manual Normalized Cloud-mass (NCM) method. We find a linear correlation and good quantitative agreement between SO2 burdens derived from the BRI and NCM techniques, with an improved correlation when wet season data are excluded. We also present the first comparisons between volcanic SO2 emission rates obtained from ground-based mini-DOAS measurements at Turrialba and three new OMI SO2 data analysis techniques: the MODIS smoke estimation, OMI SO2 lifetime, and OMI SO2 transect techniques. A robust validation of OMI SO2 retrievals was made, with both qualitative and quantitative agreements under specific atmospheric conditions, proving the utility of satellite measurements for estimating accurate SO2 emission rates and monitoring passively degassing volcanoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.