960 resultados para stochastic dynamically systems
Resumo:
Dynamically Reconfigurable Systems are attracting a growing interest, mainly due to the emergence of novel applications based on this technology. However, commercial tools do not provide enough flexibility to design solutions, while keeping an acceptable design productivity. In this paper, a novel design flow is proposed, targeting dynamically reconfigurable systems. It is fully supported by a tool called Dreams, which is able to implement flexible systems, starting from a set of netlists corresponding to the modules, as well as a system description provided by the user. The tool automatically post-processes the nets, implementing a solution for the communications between reconfigurable regions, as well as the handling of routing conflicts, by means of a custom router. Since the design process of every module and the static system are independent, the proposed flow is compatible with system upgrade at run-time. In this paper, a use case corresponding to the design of a highly regular and parallel mesh-type architecture is described, in order to show the architectural flexibility offered by the tool.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
Cyber-Physical Systems need to handle increasingly complex tasks, which additionally, may have variable operating conditions over time. Therefore, dynamic resource management to adapt the system to different needs is required. In this paper, a new bus-based architecture, called ARTICo3, which by means of Dynamic Partial Reconfiguration, allows the replication of hardware tasks to support module redundancy, multi-thread operation or dual-rail solutions for enhanced side-channel attack protection is presented. A configuration-aware data transaction unit permits data dispatching to more than one module in parallel, or provide coalesced data dispatching among different units to maximize the advantages of burst transactions. The selection of a given configuration is application independent but context-aware, which may be achieved by the combination of a multi-thread model similar to the CUDA kernel model specification, combined with a dynamic thread/task/kernel scheduler. A multi-kernel application for face recognition is used as an application example to show one scenario of the ARTICo3 architecture.
Resumo:
Esta tesis doctoral se enmarca dentro del campo de los sistemas embebidos reconfigurables, redes de sensores inalámbricas para aplicaciones de altas prestaciones, y computación distribuida. El documento se centra en el estudio de alternativas de procesamiento para sistemas embebidos autónomos distribuidos de altas prestaciones (por sus siglas en inglés, High-Performance Autonomous Distributed Systems (HPADS)), así como su evolución hacia el procesamiento de alta resolución. El estudio se ha llevado a cabo tanto a nivel de plataforma como a nivel de las arquitecturas de procesamiento dentro de la plataforma con el objetivo de optimizar aspectos tan relevantes como la eficiencia energética, la capacidad de cómputo y la tolerancia a fallos del sistema. Los HPADS son sistemas realimentados, normalmente formados por elementos distribuidos conectados o no en red, con cierta capacidad de adaptación, y con inteligencia suficiente para llevar a cabo labores de prognosis y/o autoevaluación. Esta clase de sistemas suele formar parte de sistemas más complejos llamados sistemas ciber-físicos (por sus siglas en inglés, Cyber-Physical Systems (CPSs)). Los CPSs cubren un espectro enorme de aplicaciones, yendo desde aplicaciones médicas, fabricación, o aplicaciones aeroespaciales, entre otras muchas. Para el diseño de este tipo de sistemas, aspectos tales como la confiabilidad, la definición de modelos de computación, o el uso de metodologías y/o herramientas que faciliten el incremento de la escalabilidad y de la gestión de la complejidad, son fundamentales. La primera parte de esta tesis doctoral se centra en el estudio de aquellas plataformas existentes en el estado del arte que por sus características pueden ser aplicables en el campo de los CPSs, así como en la propuesta de un nuevo diseño de plataforma de altas prestaciones que se ajuste mejor a los nuevos y más exigentes requisitos de las nuevas aplicaciones. Esta primera parte incluye descripción, implementación y validación de la plataforma propuesta, así como conclusiones sobre su usabilidad y sus limitaciones. Los principales objetivos para el diseño de la plataforma propuesta se enumeran a continuación: • Estudiar la viabilidad del uso de una FPGA basada en RAM como principal procesador de la plataforma en cuanto a consumo energético y capacidad de cómputo. • Propuesta de técnicas de gestión del consumo de energía en cada etapa del perfil de trabajo de la plataforma. •Propuestas para la inclusión de reconfiguración dinámica y parcial de la FPGA (por sus siglas en inglés, Dynamic Partial Reconfiguration (DPR)) de forma que sea posible cambiar ciertas partes del sistema en tiempo de ejecución y sin necesidad de interrumpir al resto de las partes. Evaluar su aplicabilidad en el caso de HPADS. Las nuevas aplicaciones y nuevos escenarios a los que se enfrentan los CPSs, imponen nuevos requisitos en cuanto al ancho de banda necesario para el procesamiento de los datos, así como en la adquisición y comunicación de los mismos, además de un claro incremento en la complejidad de los algoritmos empleados. Para poder cumplir con estos nuevos requisitos, las plataformas están migrando desde sistemas tradicionales uni-procesador de 8 bits, a sistemas híbridos hardware-software que incluyen varios procesadores, o varios procesadores y lógica programable. Entre estas nuevas arquitecturas, las FPGAs y los sistemas en chip (por sus siglas en inglés, System on Chip (SoC)) que incluyen procesadores embebidos y lógica programable, proporcionan soluciones con muy buenos resultados en cuanto a consumo energético, precio, capacidad de cómputo y flexibilidad. Estos buenos resultados son aún mejores cuando las aplicaciones tienen altos requisitos de cómputo y cuando las condiciones de trabajo son muy susceptibles de cambiar en tiempo real. La plataforma propuesta en esta tesis doctoral se ha denominado HiReCookie. La arquitectura incluye una FPGA basada en RAM como único procesador, así como un diseño compatible con la plataforma para redes de sensores inalámbricas desarrollada en el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI-UPM) conocida como Cookies. Esta FPGA, modelo Spartan-6 LX150, era, en el momento de inicio de este trabajo, la mejor opción en cuanto a consumo y cantidad de recursos integrados, cuando además, permite el uso de reconfiguración dinámica y parcial. Es importante resaltar que aunque los valores de consumo son los mínimos para esta familia de componentes, la potencia instantánea consumida sigue siendo muy alta para aquellos sistemas que han de trabajar distribuidos, de forma autónoma, y en la mayoría de los casos alimentados por baterías. Por esta razón, es necesario incluir en el diseño estrategias de ahorro energético para incrementar la usabilidad y el tiempo de vida de la plataforma. La primera estrategia implementada consiste en dividir la plataforma en distintas islas de alimentación de forma que sólo aquellos elementos que sean estrictamente necesarios permanecerán alimentados, cuando el resto puede estar completamente apagado. De esta forma es posible combinar distintos modos de operación y así optimizar enormemente el consumo de energía. El hecho de apagar la FPGA para ahora energía durante los periodos de inactividad, supone la pérdida de la configuración, puesto que la memoria de configuración es una memoria volátil. Para reducir el impacto en el consumo y en el tiempo que supone la reconfiguración total de la plataforma una vez encendida, en este trabajo, se incluye una técnica para la compresión del archivo de configuración de la FPGA, de forma que se consiga una reducción del tiempo de configuración y por ende de la energía consumida. Aunque varios de los requisitos de diseño pueden satisfacerse con el diseño de la plataforma HiReCookie, es necesario seguir optimizando diversos parámetros tales como el consumo energético, la tolerancia a fallos y la capacidad de procesamiento. Esto sólo es posible explotando todas las posibilidades ofrecidas por la arquitectura de procesamiento en la FPGA. Por lo tanto, la segunda parte de esta tesis doctoral está centrada en el diseño de una arquitectura reconfigurable denominada ARTICo3 (Arquitectura Reconfigurable para el Tratamiento Inteligente de Cómputo, Confiabilidad y Consumo de energía) para la mejora de estos parámetros por medio de un uso dinámico de recursos. ARTICo3 es una arquitectura de procesamiento para FPGAs basadas en RAM, con comunicación tipo bus, preparada para dar soporte para la gestión dinámica de los recursos internos de la FPGA en tiempo de ejecución gracias a la inclusión de reconfiguración dinámica y parcial. Gracias a esta capacidad de reconfiguración parcial, es posible adaptar los niveles de capacidad de procesamiento, energía consumida o tolerancia a fallos para responder a las demandas de la aplicación, entorno, o métricas internas del dispositivo mediante la adaptación del número de recursos asignados para cada tarea. Durante esta segunda parte de la tesis se detallan el diseño de la arquitectura, su implementación en la plataforma HiReCookie, así como en otra familia de FPGAs, y su validación por medio de diferentes pruebas y demostraciones. Los principales objetivos que se plantean la arquitectura son los siguientes: • Proponer una metodología basada en un enfoque multi-hilo, como las propuestas por CUDA (por sus siglas en inglés, Compute Unified Device Architecture) u Open CL, en la cual distintos kernels, o unidades de ejecución, se ejecuten en un numero variable de aceleradores hardware sin necesidad de cambios en el código de aplicación. • Proponer un diseño y proporcionar una arquitectura en la que las condiciones de trabajo cambien de forma dinámica dependiendo bien de parámetros externos o bien de parámetros que indiquen el estado de la plataforma. Estos cambios en el punto de trabajo de la arquitectura serán posibles gracias a la reconfiguración dinámica y parcial de aceleradores hardware en tiempo real. • Explotar las posibilidades de procesamiento concurrente, incluso en una arquitectura basada en bus, por medio de la optimización de las transacciones en ráfaga de datos hacia los aceleradores. •Aprovechar las ventajas ofrecidas por la aceleración lograda por módulos puramente hardware para conseguir una mejor eficiencia energética. • Ser capaces de cambiar los niveles de redundancia de hardware de forma dinámica según las necesidades del sistema en tiempo real y sin cambios para el código de aplicación. • Proponer una capa de abstracción entre el código de aplicación y el uso dinámico de los recursos de la FPGA. El diseño en FPGAs permite la utilización de módulos hardware específicamente creados para una aplicación concreta. De esta forma es posible obtener rendimientos mucho mayores que en el caso de las arquitecturas de propósito general. Además, algunas FPGAs permiten la reconfiguración dinámica y parcial de ciertas partes de su lógica en tiempo de ejecución, lo cual dota al diseño de una gran flexibilidad. Los fabricantes de FPGAs ofrecen arquitecturas predefinidas con la posibilidad de añadir bloques prediseñados y poder formar sistemas en chip de una forma más o menos directa. Sin embargo, la forma en la que estos módulos hardware están organizados dentro de la arquitectura interna ya sea estática o dinámicamente, o la forma en la que la información se intercambia entre ellos, influye enormemente en la capacidad de cómputo y eficiencia energética del sistema. De la misma forma, la capacidad de cargar módulos hardware bajo demanda, permite añadir bloques redundantes que permitan aumentar el nivel de tolerancia a fallos de los sistemas. Sin embargo, la complejidad ligada al diseño de bloques hardware dedicados no debe ser subestimada. Es necesario tener en cuenta que el diseño de un bloque hardware no es sólo su propio diseño, sino también el diseño de sus interfaces, y en algunos casos de los drivers software para su manejo. Además, al añadir más bloques, el espacio de diseño se hace más complejo, y su programación más difícil. Aunque la mayoría de los fabricantes ofrecen interfaces predefinidas, IPs (por sus siglas en inglés, Intelectual Property) comerciales y plantillas para ayudar al diseño de los sistemas, para ser capaces de explotar las posibilidades reales del sistema, es necesario construir arquitecturas sobre las ya establecidas para facilitar el uso del paralelismo, la redundancia, y proporcionar un entorno que soporte la gestión dinámica de los recursos. Para proporcionar este tipo de soporte, ARTICo3 trabaja con un espacio de soluciones formado por tres ejes fundamentales: computación, consumo energético y confiabilidad. De esta forma, cada punto de trabajo se obtiene como una solución de compromiso entre estos tres parámetros. Mediante el uso de la reconfiguración dinámica y parcial y una mejora en la transmisión de los datos entre la memoria principal y los aceleradores, es posible dedicar un número variable de recursos en el tiempo para cada tarea, lo que hace que los recursos internos de la FPGA sean virtualmente ilimitados. Este variación en el tiempo del número de recursos por tarea se puede usar bien para incrementar el nivel de paralelismo, y por ende de aceleración, o bien para aumentar la redundancia, y por lo tanto el nivel de tolerancia a fallos. Al mismo tiempo, usar un numero óptimo de recursos para una tarea mejora el consumo energético ya que bien es posible disminuir la potencia instantánea consumida, o bien el tiempo de procesamiento. Con el objetivo de mantener los niveles de complejidad dentro de unos límites lógicos, es importante que los cambios realizados en el hardware sean totalmente transparentes para el código de aplicación. A este respecto, se incluyen distintos niveles de transparencia: • Transparencia a la escalabilidad: los recursos usados por una misma tarea pueden ser modificados sin que el código de aplicación sufra ningún cambio. • Transparencia al rendimiento: el sistema aumentara su rendimiento cuando la carga de trabajo aumente, sin cambios en el código de aplicación. • Transparencia a la replicación: es posible usar múltiples instancias de un mismo módulo bien para añadir redundancia o bien para incrementar la capacidad de procesamiento. Todo ello sin que el código de aplicación cambie. • Transparencia a la posición: la posición física de los módulos hardware es arbitraria para su direccionamiento desde el código de aplicación. • Transparencia a los fallos: si existe un fallo en un módulo hardware, gracias a la redundancia, el código de aplicación tomará directamente el resultado correcto. • Transparencia a la concurrencia: el hecho de que una tarea sea realizada por más o menos bloques es transparente para el código que la invoca. Por lo tanto, esta tesis doctoral contribuye en dos líneas diferentes. En primer lugar, con el diseño de la plataforma HiReCookie y en segundo lugar con el diseño de la arquitectura ARTICo3. Las principales contribuciones de esta tesis se resumen a continuación. • Arquitectura de la HiReCookie incluyendo: o Compatibilidad con la plataforma Cookies para incrementar las capacidades de esta. o División de la arquitectura en distintas islas de alimentación. o Implementación de los diversos modos de bajo consumo y políticas de despertado del nodo. o Creación de un archivo de configuración de la FPGA comprimido para reducir el tiempo y el consumo de la configuración inicial. • Diseño de la arquitectura reconfigurable para FPGAs basadas en RAM ARTICo3: o Modelo de computación y modos de ejecución inspirados en el modelo de CUDA pero basados en hardware reconfigurable con un número variable de bloques de hilos por cada unidad de ejecución. o Estructura para optimizar las transacciones de datos en ráfaga proporcionando datos en cascada o en paralelo a los distinto módulos incluyendo un proceso de votado por mayoría y operaciones de reducción. o Capa de abstracción entre el procesador principal que incluye el código de aplicación y los recursos asignados para las diferentes tareas. o Arquitectura de los módulos hardware reconfigurables para mantener la escalabilidad añadiendo una la interfaz para las nuevas funcionalidades con un simple acceso a una memoria RAM interna. o Caracterización online de las tareas para proporcionar información a un módulo de gestión de recursos para mejorar la operación en términos de energía y procesamiento cuando además se opera entre distintos nieles de tolerancia a fallos. El documento está dividido en dos partes principales formando un total de cinco capítulos. En primer lugar, después de motivar la necesidad de nuevas plataformas para cubrir las nuevas aplicaciones, se detalla el diseño de la plataforma HiReCookie, sus partes, las posibilidades para bajar el consumo energético y se muestran casos de uso de la plataforma así como pruebas de validación del diseño. La segunda parte del documento describe la arquitectura reconfigurable, su implementación en varias FPGAs, y pruebas de validación en términos de capacidad de procesamiento y consumo energético, incluyendo cómo estos aspectos se ven afectados por el nivel de tolerancia a fallos elegido. Los capítulos a lo largo del documento son los siguientes: El capítulo 1 analiza los principales objetivos, motivación y aspectos teóricos necesarios para seguir el resto del documento. El capítulo 2 está centrado en el diseño de la plataforma HiReCookie y sus posibilidades para disminuir el consumo de energía. El capítulo 3 describe la arquitectura reconfigurable ARTICo3. El capítulo 4 se centra en las pruebas de validación de la arquitectura usando la plataforma HiReCookie para la mayoría de los tests. Un ejemplo de aplicación es mostrado para analizar el funcionamiento de la arquitectura. El capítulo 5 concluye esta tesis doctoral comentando las conclusiones obtenidas, las contribuciones originales del trabajo y resultados y líneas futuras. ABSTRACT This PhD Thesis is framed within the field of dynamically reconfigurable embedded systems, advanced sensor networks and distributed computing. The document is centred on the study of processing solutions for high-performance autonomous distributed systems (HPADS) as well as their evolution towards High performance Computing (HPC) systems. The approach of the study is focused on both platform and processor levels to optimise critical aspects such as computing performance, energy efficiency and fault tolerance. HPADS are considered feedback systems, normally networked and/or distributed, with real-time adaptive and predictive functionality. These systems, as part of more complex systems known as Cyber-Physical Systems (CPSs), can be applied in a wide range of fields such as military, health care, manufacturing, aerospace, etc. For the design of HPADS, high levels of dependability, the definition of suitable models of computation, and the use of methodologies and tools to support scalability and complexity management, are required. The first part of the document studies the different possibilities at platform design level in the state of the art, together with description, development and validation tests of the platform proposed in this work to cope with the previously mentioned requirements. The main objectives targeted by this platform design are the following: • Study the feasibility of using SRAM-based FPGAs as the main processor of the platform in terms of energy consumption and performance for high demanding applications. • Analyse and propose energy management techniques to reduce energy consumption in every stage of the working profile of the platform. • Provide a solution with dynamic partial and wireless remote HW reconfiguration (DPR) to be able to change certain parts of the FPGA design at run time and on demand without interrupting the rest of the system. • Demonstrate the applicability of the platform in different test-bench applications. In order to select the best approach for the platform design in terms of processing alternatives, a study of the evolution of the state-of-the-art platforms is required to analyse how different architectures cope with new more demanding applications and scenarios: security, mixed-critical systems for aerospace, multimedia applications, or military environments, among others. In all these scenarios, important changes in the required processing bandwidth or the complexity of the algorithms used are provoking the migration of the platforms from single microprocessor architectures to multiprocessing and heterogeneous solutions with more instant power consumption but higher energy efficiency. Within these solutions, FPGAs and Systems on Chip including FPGA fabric and dedicated hard processors, offer a good trade of among flexibility, processing performance, energy consumption and price, when they are used in demanding applications where working conditions are very likely to vary over time and high complex algorithms are required. The platform architecture proposed in this PhD Thesis is called HiReCookie. It includes an SRAM-based FPGA as the main and only processing unit. The FPGA selected, the Xilinx Spartan-6 LX150, was at the beginning of this work the best choice in terms of amount of resources and power. Although, the power levels are the lowest of these kind of devices, they can be still very high for distributed systems that normally work powered by batteries. For that reason, it is necessary to include different energy saving possibilities to increase the usability of the platform. In order to reduce energy consumption, the platform architecture is divided into different power islands so that only those parts of the systems that are strictly needed are powered on, while the rest of the islands can be completely switched off. This allows a combination of different low power modes to decrease energy. In addition, one of the most important handicaps of SRAM-based FPGAs is that they are not alive at power up. Therefore, recovering the system from a switch-off state requires to reload the FPGA configuration from a non-volatile memory device. For that reason, this PhD Thesis also proposes a methodology to compress the FPGA configuration file in order to reduce time and energy during the initial configuration process. Although some of the requirements for the design of HPADS are already covered by the design of the HiReCookie platform, it is necessary to continue improving energy efficiency, computing performance and fault tolerance. This is only possible by exploiting all the opportunities provided by the processing architectures configured inside the FPGA. Therefore, the second part of the thesis details the design of the so called ARTICo3 FPGA architecture to enhance the already intrinsic capabilities of the FPGA. ARTICo3 is a DPR-capable bus-based virtual architecture for multiple HW acceleration in SRAM-based FPGAs. The architecture provides support for dynamic resource management in real time. In this way, by using DPR, it will be possible to change the levels of computing performance, energy consumption and fault tolerance on demand by increasing or decreasing the amount of resources used by the different tasks. Apart from the detailed design of the architecture and its implementation in different FPGA devices, different validation tests and comparisons are also shown. The main objectives targeted by this FPGA architecture are listed as follows: • Provide a method based on a multithread approach such as those offered by CUDA (Compute Unified Device Architecture) or OpenCL kernel executions, where kernels are executed in a variable number of HW accelerators without requiring application code changes. • Provide an architecture to dynamically adapt working points according to either self-measured or external parameters in terms of energy consumption, fault tolerance and computing performance. Taking advantage of DPR capabilities, the architecture must provide support for a dynamic use of resources in real time. • Exploit concurrent processing capabilities in a standard bus-based system by optimizing data transactions to and from HW accelerators. • Measure the advantage of HW acceleration as a technique to boost performance to improve processing times and save energy by reducing active times for distributed embedded systems. • Dynamically change the levels of HW redundancy to adapt fault tolerance in real time. • Provide HW abstraction from SW application design. FPGAs give the possibility of designing specific HW blocks for every required task to optimise performance while some of them include the possibility of including DPR. Apart from the possibilities provided by manufacturers, the way these HW modules are organised, addressed and multiplexed in area and time can improve computing performance and energy consumption. At the same time, fault tolerance and security techniques can also be dynamically included using DPR. However, the inherent complexity of designing new HW modules for every application is not negligible. It does not only consist of the HW description, but also the design of drivers and interfaces with the rest of the system, while the design space is widened and more complex to define and program. Even though the tools provided by the majority of manufacturers already include predefined bus interfaces, commercial IPs, and templates to ease application prototyping, it is necessary to improve these capabilities. By adding new architectures on top of them, it is possible to take advantage of parallelization and HW redundancy while providing a framework to ease the use of dynamic resource management. ARTICo3 works within a solution space where working points change at run time in a 3D space defined by three different axes: Computation, Consumption, and Fault Tolerance. Therefore, every working point is found as a trade-off solution among these three axes. By means of DPR, different accelerators can be multiplexed so that the amount of available resources for any application is virtually unlimited. Taking advantage of DPR capabilities and a novel way of transmitting data to the reconfigurable HW accelerators, it is possible to dedicate a dynamically-changing number of resources for a given task in order to either boost computing speed or adding HW redundancy and a voting process to increase fault-tolerance levels. At the same time, using an optimised amount of resources for a given task reduces energy consumption by reducing instant power or computing time. In order to keep level complexity under certain limits, it is important that HW changes are transparent for the application code. Therefore, different levels of transparency are targeted by the system: • Scalability transparency: a task must be able to expand its resources without changing the system structure or application algorithms. • Performance transparency: the system must reconfigure itself as load changes. • Replication transparency: multiple instances of the same task are loaded to increase reliability and performance. • Location transparency: resources are accessed with no knowledge of their location by the application code. • Failure transparency: task must be completed despite a failure in some components. • Concurrency transparency: different tasks will work in a concurrent way transparent to the application code. Therefore, as it can be seen, the Thesis is contributing in two different ways. First with the design of the HiReCookie platform and, second with the design of the ARTICo3 architecture. The main contributions of this PhD Thesis are then listed below: • Architecture of the HiReCookie platform including: o Compatibility of the processing layer for high performance applications with the Cookies Wireless Sensor Network platform for fast prototyping and implementation. o A division of the architecture in power islands. o All the different low-power modes. o The creation of the partial-initial bitstream together with the wake-up policies of the node. • The design of the reconfigurable architecture for SRAM FPGAs: ARTICo3: o A model of computation and execution modes inspired in CUDA but based on reconfigurable HW with a dynamic number of thread blocks per kernel. o A structure to optimise burst data transactions providing coalesced or parallel data to HW accelerators, parallel voting process and reduction operation. o The abstraction provided to the host processor with respect to the operation of the kernels in terms of the number of replicas, modes of operation, location in the reconfigurable area and addressing. o The architecture of the modules representing the thread blocks to make the system scalable by adding functional units only adding an access to a BRAM port. o The online characterization of the kernels to provide information to a scheduler or resource manager in terms of energy consumption and processing time when changing among different fault-tolerance levels, as well as if a kernel is expected to work in the memory-bounded or computing-bounded areas. The document of the Thesis is divided into two main parts with a total of five chapters. First, after motivating the need for new platforms to cover new more demanding applications, the design of the HiReCookie platform, its parts and several partial tests are detailed. The design of the platform alone does not cover all the needs of these applications. Therefore, the second part describes the architecture inside the FPGA, called ARTICo3, proposed in this PhD Thesis. The architecture and its implementation are tested in terms of energy consumption and computing performance showing different possibilities to improve fault tolerance and how this impact in energy and time of processing. Chapter 1 shows the main goals of this PhD Thesis and the technology background required to follow the rest of the document. Chapter 2 shows all the details about the design of the FPGA-based platform HiReCookie. Chapter 3 describes the ARTICo3 architecture. Chapter 4 is focused on the validation tests of the ARTICo3 architecture. An application for proof of concept is explained where typical kernels related to image processing and encryption algorithms are used. Further experimental analyses are performed using these kernels. Chapter 5 concludes the document analysing conclusions, comments about the contributions of the work, and some possible future lines for the work.
Resumo:
An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.
Resumo:
The present thesis is focused on the development of a thorough mathematical modelling and computational solution framework aimed at the numerical simulation of journal and sliding bearing systems operating under a wide range of lubrication regimes (mixed, elastohydrodynamic and full film lubrication regimes) and working conditions (static, quasi-static and transient conditions). The fluid flow effects have been considered in terms of the Isothermal Generalized Equation of the Mechanics of the Viscous Thin Films (Reynolds equation), along with the massconserving p-Ø Elrod-Adams cavitation model that accordingly ensures the so-called JFO complementary boundary conditions for fluid film rupture. The variation of the lubricant rheological properties due to the viscous-pressure (Barus and Roelands equations), viscous-shear-thinning (Eyring and Carreau-Yasuda equations) and density-pressure (Dowson-Higginson equation) relationships have also been taken into account in the overall modelling. Generic models have been derived for the aforementioned bearing components in order to enable their applications in general multibody dynamic systems (MDS), and by including the effects of angular misalignments, superficial geometric defects (form/waviness deviations, EHL deformations, etc.) and axial motion. The bearing exibility (conformal EHL) has been incorporated by means of FEM model reduction (or condensation) techniques. The macroscopic in fluence of the mixedlubrication phenomena have been included into the modelling by the stochastic Patir and Cheng average ow model and the Greenwood-Williamson/Greenwood-Tripp formulations for rough contacts. Furthermore, a deterministic mixed-lubrication model with inter-asperity cavitation has also been proposed for full-scale simulations in the microscopic (roughness) level. According to the extensive mathematical modelling background established, three significant contributions have been accomplished. Firstly, a general numerical solution for the Reynolds lubrication equation with the mass-conserving p - Ø cavitation model has been developed based on the hybridtype Element-Based Finite Volume Method (EbFVM). This new solution scheme allows solving lubrication problems with complex geometries to be discretized by unstructured grids. The numerical method was validated in agreement with several example cases from the literature, and further used in numerical experiments to explore its exibility in coping with irregular meshes for reducing the number of nodes required in the solution of textured sliding bearings. Secondly, novel robust partitioned techniques, namely: Fixed Point Gauss-Seidel Method (PGMF), Point Gauss-Seidel Method with Aitken Acceleration (PGMA) and Interface Quasi-Newton Method with Inverse Jacobian from Least-Squares approximation (IQN-ILS), commonly adopted for solving uid-structure interaction problems have been introduced in the context of tribological simulations, particularly for the coupled calculation of dynamic conformal EHL contacts. The performance of such partitioned methods was evaluated according to simulations of dynamically loaded connecting-rod big-end bearings of both heavy-duty and high-speed engines. Finally, the proposed deterministic mixed-lubrication modelling was applied to investigate the in fluence of the cylinder liner wear after a 100h dynamometer engine test on the hydrodynamic pressure generation and friction of Twin-Land Oil Control Rings.
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
This article describes architecture and implementation of subsystem intended for working with queries and reports in adaptive dynamically extended information systems able to dynamically extending. The main features of developed approach are application universality, user orientation and opportunity to integrate with external information systems. Software implementation is based on multilevel metadata approach.
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.