993 resultados para stellate cells
Resumo:
Background: Encapsulation in hepatocellular carcinoma is associated with decreased invasiveness and improved survival in several series. Although active fibrogenesis by myofibroblasts has been demonstrated in the capsule, it is unclear if the capsule results from a general increase in peritumoral fibrosis, or an inherently less invasive tumor phenotype. The relationship between collagen deposition within tumor stroma, presence of cirrhosis and invasiveness also needs clarification. Methods: We performed immunohistochemistry for collagens I, III, IV and VI on sections of encapsulated and non-encapsulated hepatocellular carcinoma, arising in cirrhotic and non-cirrhotic livers. Staining was graded semi-quantitatively in tumor stromal elements and adjacent parenchymal sinusoids. The relationship of this staining with encapsulation, cirrhosis, and vascular invasion was analyzed. Results: Formation of a discrete capsular layer was associated with reduced vascular invasion, but not with a pervasive increase in peritumoral fibrosis. Increased collagen I content of tumor stroma and adjacent parenchymal sinusoids was associated with non-encapsulated tumors and vascular invasion. The presence of cirrhosis had little effect on capsule composition. Conclusions: Encapsulation of hepatocellular carcinoma reflects reduced invasiveness, rather than increased peritumoral collagen synthesis, which may instead enhance invasion. Increased intratumoral collagen I protein is also associated with increased tumor invasiveness. Pre-existing cirrhosis has little effect on tumor progression, possibly because the characteristics of cirrhosis are overwhelmed by tumor-induced changes in the adjacent parenchyma.(C) 2003 Blackwell Publishing Asia Pty Ltd.
Resumo:
Steatosis is increasingly recognized as a cofactor influencing the progression of fibrosis in chronic hepatitis Q however, the mechanisms by which it contributes to liver injury remain uncertain. We studied 125 patients with chronic hepatitis C to assess the effect of steatosis on liver cell apoptosis and the expression of Bcl-2, Bd-x(L), Bax, and tumor necrosis factor alpha (TNF-alpha) and the relationship between liver cell apoptosis and disease severity. A significant increase in liver cell apoptosis was seen in liver sections with increasing grade of steatosis (r = 0.42; P < .0001). Hepatic steatosis and previous heavy alcohol consumption were the only two variables independently associated with the apoptotic index. Increasing steatosis was associated with decreased Bcl-2 mRNA levels and an increase in the proapoptotic Bax/Bcl-2 ratio (r = -0.32, P = .007; and r = 0.27, P = .02, respectively). In the absence of steatosis, increased liver cell apoptosis was not associated with stellate cell activation or fibrosis (r = 0.26, P = .11; r = 0.06, P = .71, respectively). In contrast, in the presence of steatosis, increasing apoptosis was associated with activation of stellate cells and increased stage of fibrosis (r = 0.35, P = .047; r = 0.33, P = .03, respectively), supporting the premise that the steatotic liver is more vulnerable to liver injury. In patients with hepatitis C virus genotype 3, there was a significant correlation between TNF-α mRNA levels and active caspase-3 (r = 0.54, P = .007). In conclusion, these observations suggest a mechanism whereby steatosis contributes to the progression of liver injury in chronic hepatitis C. Further investigation will be required to determine the molecular pathways responsible for the proapoptotic effect of steatosis and whether this increase in apoptosis contributes directly to fibrogenesis.
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.
Resumo:
We present clinicopathologic data on 10 pulmonary myxoid sarcomas, which are defined by distinctive histomorphologic features and characterized by a recurrent fusion gene, that appear to represent a distinct tumor entity at this site. The patients [7 female, 3 male; aged 27 to 67 y (mean, 45 y)] presented with local or systemic symptoms (n=5), symptoms from cerebral metastasis (1), or incidentally (2). Follow-up of 6 patients showed that 1 with brain metastasis died shortly after primary tumor resection, 1 developed a renal metastasis but is alive and well, and 4 are disease free after 1 to 15 years. All tumors involved pulmonary parenchyma, with a predominant endobronchial component in 8 and ranged from 1.5 to 4 cm. Microscopically, they were lobulated and composed of cords of polygonal, spindle, or stellate cells within myxoid stroma, morphologically reminiscent of extraskeletal myxoid chondrosarcoma. Four cases showed no or minimal atypia, 6 showed focal pleomorphism, and 5 had necrosis. Mitotic indices varied, with most tumors not exceeding 5/10 high-power fields. Tumors were immunoreactive for only vimentin and weakly focal for epithelial membrane antigen. Of 9 tumors, 7 were shown to harbor a specific EWSR1-CREB1 fusion by reverse transcription-polymerase chain reaction and direct sequencing, with 7 of 10 showing EWSR1 rearrangement by fluorescence in situ hybridization. This gene fusion has been described previously in 2 histologically and behaviorally different sarcomas: clear cell sarcoma-like tumors of the gastrointestinal tract and angiomatoid fibrous histiocytomas; however, this is a novel finding in tumors with the morphology we describe and that occur in the pulmonary region.
Negative regulation of the hepatic fibrogenic response by suppressor of cytokine signaling 1 (SOCS1)
Resumo:
Abstract: Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFN-γ signaling and has been implicated in the regulation of liver fibrosis. However, it is not known whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via modulating IFN-γ, which has been implicated in attenuating hepatic fibrosis. Additionally, it is possible that SOCS1 controls liver fibrosis by regulating hepatic stellate cells (HSC), a key player in fibrogenic response. While the activation pathways of HSCs have been well characterized, the regulatory mechanisms are not yet clear. The goals of this study were to dissociate IFN-γ-dependent and SOCS1-mediated regulation of hepatic fibrogenic response, and to elucidate the regulatory functions of SOCS1 in H SC activation. Liver fibrosis was induced in Socs1[superscript -/-]Ifng[superscript -/-] mice with dimethylnitrosamine or carbon tetrachloride. Ifng[superscript -/-] and C57BL/6 mice served as controls. Following fibrogenic treatments, Socs1[superscript -/-]Ifng[superscript -/-] mice showed elevated serum ALT levels and increased liver fibrosis com-pared to mice Ifng[superscript -/-]. The latter group showed higher alanine aminotransferase (ALT) levels and fibrosis than C57BL/6 controls. The livers of Socs1-deficient mice showed bridging fibrosis, which was associated with increased accumulation of myofibroblasts and abundant collagen deposition. Socs1-deficient livers showed increased expression of genes coding for smooth muscle actin, collagen, and enzymes involved in remodeling the extracellular matrix, namely matrix metalloproteinases and tissue inhibitor of metalloproteinases. Primary HSCs from Socs1-deficient mice showed increased proliferation in response to growth factors such as HGF, EGF and PDGF, and the fibrotic livers of Socs1-deficient mice showed increased expression of the Pdgfb gene. Taken together, these data indicate that SOCS1 controls liver fibrosis independently of IFN-γ and that part of this regulation may occur via regulating HSC proliferation and limiting growth factor availability.
Resumo:
We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.
Resumo:
Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.
Resumo:
PURPOSE: In the current study we examined the location of interstitial cell of Cajal (ICC)-like cells in the guinea pig bladder wall and studied their structural interactions with nerves and smooth muscle cells. MATERIALS AND METHODS: Whole mount samples and cryosections of bladder tissue were labeled with primary and fluorescent secondary antibodies, and imaged using confocal and multiphoton microscopy. RESULTS: Kit positive ICC-like cells were located below the urothelium, in the lamina propria region and throughout the detrusor. In the suburothelium they had a stellate morphology and appeared to network. They made connections with nerves, as shown by double labeling experiments with anti-kit and anti-protein gene product 9.5. A network of vimentin positive cells was also found, of which many but not all were kit positive. In the detrusor kit positive cells were most often seen at the edge of smooth muscle bundles. They were elongated with lateral branches, running in parallel with the bundles and closely associated with intramural nerves. Another population of kit positive cells was seen in the detrusor between muscle bundles. These cells had a more stellate-like morphology and made connections with each other. Kit positive cells were seen tracking nerve bundles and close to intramural ganglia. Vimentin positive cells were present in the detrusor, of which some were also kit positive. CONCLUSIONS: There are several populations of ICC-like cells throughout the guinea pig bladder wall. They differ in morphology and orientation but all make connections with intramural nerves and in the detrusor they are closely associated with smooth muscle cells.
Resumo:
OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]
Resumo:
PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
Rho, a member of the Rho small G protein family, regulates the formation of stress fibers and focal adhesions in various types of cultured cells. We investigated here the actions of ROCK and mDia, both of which have been identified to be putative downstream target molecules of Rho, in Madin–Darby canine kidney cells. The dominant active mutant of RhoA induced the formation of parallel stress fibers and focal adhesions, whereas the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, and the dominant active mutant of mDia induced the weak formation of parallel stress fibers without affecting the formation of focal adhesions. In the presence of C3 ADP-ribosyltransferase for Rho, the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, whereas the dominant active mutant of mDia induced only the diffuse localization of actin filaments. These results indicate that ROCK and mDia show distinct actions in reorganization of the actin cytoskeleton. The dominant negative mutant of either ROCK or mDia inhibited the formation of stress fibers and focal adhesions, indicating that both ROCK and mDia are necessary for the formation of stress fibers and focal adhesions. Moreover, inactivation and reactivation of both ROCK and mDia were necessary for the 12-O-tetradecanoylphorbol-13-acetate–induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. The morphologies of stress fibers and focal adhesions in the cells expressing both the dominant active mutants of ROCK and mDia were not identical to those induced by the dominant active mutant of Rho. These results indicate that at least ROCK and mDia cooperatively act as downstream target molecules of Rho in the Rho-induced reorganization of the actin cytoskeleton.